OMmRoON

eV+ Language

Reference Guide

1605-E-01

Copyright Notice

The information contained herein is the property of Omron Adept Technologies, Inc., and shall not be
reproduced in whole or in part without prior written approval of Omron Adept Technologies, Inc. The
information herein is subject to change without notice and should not be construed as a commitment by
Omron Adept Technologies, Inc. The documentation is periodically reviewed and revised.

Omron Adept Technologies, Inc., assumes no responsibility for any errors or omissions in the
documentation. Critical evaluation of the documentation by the user is welcomed. Your comments assist
us in preparation of future documentation. Please submit your comments to: techpubs@adept.com.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 3

Table Of Contents

INtrodUucCtion . L 15
Compatibility 16
Related PUbliCations o 16
Dangers, Warnings, Cautions, and Notesin Manual 17
CONVENT ONS L 18

Keyword OvervieWw ... 21
New or Enhanced KeyWords ... 22
eV+ Language QUIiCK ReferenCe . 23

Keyword Descriptions 41
Descriptions of eV4+ KeyWordso 42
Documentation Conventions for Keywords 42
ABORT program inStrUuCtioN .. 45
ABOVE program inStrUCtiON .. 47
ABS real-valued fUNCiON L 48
ACCEL program iNStruCtion . 49
ACCEL real-valued fUNCriON ... 52
ACOS real-valued fUNCEiON 54
ALIGN program inStrucCtion 55
ALIGN transformation fUNCtioN .. 56
ALWAY S KeYWOId 58
AND 0P ratOr . L 59
ANY program iNStruCtion . .. 60
APPRO program inStruCtion . 61
ASC real-valued fUNCEION L. 63
ASIN real-valued fUNCLION ... 65
ATANZ real-valued fUNCEION .. 66
ATTACH program instruction 67
AUTO program inStruCtion .. . 73
AUTO.POWER.OFF system swWitCh 76
BAND OPeratOr 78
BASE program iNStruCtioN . 80
BASE transformation funCtion 82

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 5

BCD real-valued function ... 83

BELOW program instruction 84
BELT real-valued function 85
BELT system SWitCh o L 87
BELT.MODE system parameter 89
BITS program inStrUuCtiON . 91
BITS real-valued function L 93
BMASK real-valued function 95
BOR OO At OF . 96
BRAKE program instructionl 98
BREAK program instruction 99
BSTATUS real-valued funCtion . 100
BXOR OperatOr il 102
BY KeY WO L 104
CALIBRATE program instruction 105
CALL program instruction 109
CALLP program inStruCtion L 112
CALLS program instrucCtion 114
CAS real-valued funCtion ..l 116
CASE program inStruCtiON . L 118
$SCHR string function .l 121
CLEAR.EVENT program instruCtion 122
CLEAR.LATCHES program instruction 123
CLOSE and CLOSEI program instruction 125
COARSE program instruCtion 127
COM OperatOr il 129
CONFIG real-valued function 130
COS real-valued fUNCEiON L 136
CP system SWitCh ... 137
CPOFF program instruction .. 138
CPON program instruction 140
CYCLE.END program instruction 142
DBLB real-valued funCtion ... 144
$DBLB string function ...l 146
DCB real-valued function 147
DECEL.100 system sWitCh . 148

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 6

SDECODE string fUNCriON .o 149

DECOMPOSE program instruction 152
$DEFAULT string function 154
DEFBELT program instruction .. . L 156
DEFINED real-valued function 159
DELAY program instruCtion .. 161
DELAY.IN.TOL system switch 163
DELAY.POWER.OFF system switCh 164
DEPART and DEPARTS program instruction 165
DEST transformation function 167
DETACH program instruction 169
DEVICE program inStruCtion 171
DEVICE real-valued function 173
DEVICES program instruCtion .. . 175
DISABLE program instruction 177
DISTANCE real-valued function 179
DN.RESTART program instruCtion 180
DO program instruCtion ...l 181
DOS program instruCtion 183
DRIVE program inStruCtioN 185
DRY.RUN system switCh 187
DURATION program instruCtion 189
DURATION real-valued function 192
DX, DY, DZ real-valued funCtion 194
ELSE program instruCtion .. . 196
ENABLE program instruction 197
$ENCODE string function ... 199
END program inStrUuCtioN .. 202
END KeYWOrd 203
ERROR real-valued funCtion ... 204
$ERROR string funCtion 208
ESTOP program instruction 209
EXECUTE program inStruCtioN .. . 210
EXIT program instruction 214
FALSE real-valued function 216
FCLOSE program instruCtion .. 217

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 7

FCMND program inStruCtion .. . 219

FCOPY program instruction 229
FDELETE program instruction 231
FEMPTY program inStruCtion . 233
FINE program instruction 235
FLIP program iNstrUCtiON Lo 237
FLTB real-valued function 241
SFLTB string function 243
FOPEN program instruCtion 244
FOPEN_ program instruction 247
FOR program instruction . .. 251
FORCE._ program inStruCtion 253
FRACT real-valued function 256
FRAME transformation funCtion 257
FREE real-valued function 259
FSEEK program instruction 261
FSET program instruction . 263
GETC real-valued function 266
GET.EVENT real-valued function 268
GLOBAL program instruCtion .. . 269
GOTO program iNstruCtion 271
HALT program inStruCtioN . 273
HAND real-valued function 274
HAND.TIME system parameter ... 275
HERE program inStruCtion .. 277
HERE transformation function 279
ID real-valued function 280
SID StriNgG fUNCEION e 287
IDENTICAL real-valued function 288
IF logical_expr THEN program instruction 289
IF logical_expr GOTO program instruction 291
IGNORE program instruction 293
INRANGE real-valued funCtion ... 294
INSTALL program instruction 297
INT real-valued function ..l 298
INTB real-valued funCtion e 299

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 8

$INTB string funCtion ... 301

INVERSE transformation function 302
IOSTAT real-valued function 304
TPS KeY WO . 307
JHERE program instruction 308
JMOVE program instruCtion .. 309
JOG program inStruCtion L 310
KEYMODE program instruction 314
KILL program instruCtion ... 316
LAST real-valued functionl 317
LATCH transformation function 319
LATCHED real-valued funCtion ... L 321
LEFTY program instruction 323
LEN real-valued function 325
LNGB real-valued function 326
$LNGB string fuNCtioN .l 328
LOCAL program inStruCtioN .. 330
LOCK program inStruction 332
MAX real-valued function ...l 334
MC program INSErUCHION | 335
MCS program instruction 337
MESSAGES system SWitCh . 339
$MID string fUNCEiON .l 340
MIN real-valued funCtion 341
MM PSS KEYWOIA 342
MO OPeratOr 343
MOVE and MOVES program instruction 344
MOVEC program instruCtion .. . 346
MULTIPLE program instruction 354
NETWORK real-valued funCtion ... il 356
NEXT program instruction L 358
NOFLIP program instruction . .. 360
NONULL program instruCtion 361
NOOVERLAP program instruction 363
NORMAL transformation function 365
NOT 0PI atOF . 366

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 9

NOT.CALIBRATED system parameter 367

NULL program instruction 369
NULL transformation function 371
OFF real-valued fUnCtiON ... 372
ON real-valued function ... 373
OPEN program instruCtion 374
OR 0P eIatOr .. 376
OUTSIDE real-valued function 378
OVERLAP program instruCtion ... 379
PACK program instrucCtion 381
PANIC program instrucCtion 383
PARAMETER program instrucCtion 384
PARAMETER real-valued function 386
PAUSE program inStruCtion 388
#PDEST precision-point function 389
PDNT.CLEAR program instruction 390
PDNT.NOTIFY program instruction 391
PDNT.WRITE program instruction 393
PENDANT real-valued function 396
#PHERE precision-point function ... 399
PI real-valued function 400
PING monitor command 401
#PLATCH precision-point function 402
POS real-valued function 403
POWER system sWitCh .. 404
#PPOINT precision- point function 406
PRIORITY real-valued function 408
PROCEED program instruction L 408
.PROGRAM program instruction . .. 411
PROMPT program instruCtion 414
RANDOM real-valued function 416
REACT program instruction 417
REACTE program instruCtion ... 420
REACTI program instruction 422
READ program instruction 424
READY program instruCtion ... 428

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 10

RELAX and RELAXI program instruction 430

RELEASE program instruction 432
RESET program instruction .. . 433
RETRY program inStruCtion ... 433
RETRY monitor command 434
RETURN program inStruCtion 436
RETURNE program instruction 437
RIGHTY program instruction 438
ROBOT system SWItCh o 439
ROBOT.OPR program instruction 441
ROBOT.OPR real-valued function 447
RUNSIG program instruCtion 449
RX, RY, RZ transformation functions 451
SCALE transformation funCtion .. 452
SCALE.ACCEL system switCh 453
SCALE.ACCEL.ROT system switCh 455
SELECT program instruCtion .. . L 456
SELECT real-valued function 459
SET program instruCtion 461
SET.EVENT program instrucCtion 463
#SET.POINT precision point function 464
SETBELT program inStruCtion 465
SETDEVICE program instruction 467
SHIFT transformation function 469
SIG real-valued fUNCEiON .. 470
SIG.INS real-valued function 472
SIGN real-valued function .. . 474
SIGNAL program inStruCtioN .. L 475
SIN real-valued funCtion ...l 477
SINGLE program instruCtion 478
SOLVE.ANGLES program instructionl 480
SOLVE.FLAGS real-valued function 487
SOLVE.TRANS program instruction 489
SPEED program instruction 491
SPEED real-valued function 494
SQR real-valued fUNCtiON | 496

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 11

SQRT real-valued fUuNCEioN . 497

STATE real-valued function 498
STATUS real-valued function 507
STOP program iNStrUCtiON L. el 509
STRDIF real-valued function 511
SWITCH program inStruCtion .. . 513
SWITCH real-valued function 515
$SYMBOL string function ... 517
SYMBOL.PTR real-valued function 518
$SYS.INFO string fuNCtion 519
TAS real-valued funCtion ... 521
TASK real-valued funCtioN . 524
TIME program instruction 527
TIME real-valued fUNCriON . 529
STIME string fUNCEiON ..l 532
$STIME4 string funCtion ... 534
TIMER program inStruCtion .. . 536
TIMER real-valued function 537
TOOL program instruction 540
TOOL transformation funCtion 541
TPS real-valued function ...l 542
TRANS transformation fUNCtiON 543
$TRANSB string fUNCtiON . 545
TRANSB transformation function 546
TRUE real-valued funCtion .. 548
$TRUNCATE string function 549
TYPE program instruction 550
SUNPACK string fUNCEiON 553
UNTIL program instruction .l 555
UPPER System SWitCh . 556
VAL real-valued funCtion 558
VALUE program instruction 559
WAIT program instruCtion ... 560
WAIT.EVENT program instruction 562
WHILE program instruction 565
WINDOW program instruction . . L 567

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 12

WINDOW real-valued funCtion ... 569
WRITE program instruction 573
XOR 0PI At OF 576
ID OPptioNn WoOrdS ... 578
Introduction to ID Option Wordso 579
Robot Option Words L 579
System Option Words ... 581
Processor Option Woord . 583
System Messages 584
Introduction to System Messages 585
System Messages - Alphabetical List 585
System Messages - Numerical List 662
IO X 682

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 13

Introduction

Introduction

The following topics are described in this chapter:

Compatibility .. 16
Related Publications 16
Dangers, Warnings, Cautions, and Notes in Manual__....._... 17
CoNVEN I ONS | . 18

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 15

Compatibility

Compatibility

This guide is for use with eV+ systems version v2.x and later. This guide provides reference
material and descriptions of keywords for the eV+ programming language. For information on
the eV+ operating system and descriptions of the monitor commands, see the eV+
Operating System User's Guide and the eV+ Operating System Reference Guide.

See the eV+ Release Notes for a summary of changes for each version.

Related Publications

This reference guide is a companion to the eV+ Language User's Guide, which covers the
principles of the eV+ programming language and robot-control system.

In addition to being a complete programming language, eV+ is also a complete operating
system that controls equipment connected to controllers. The eV+ Operating System User's
Guide and eV+ Operating System Reference Guide detail the eV+ operating system. You
must be familiar with the operating system in order to effectively use the eV+ programming
language.

The most current releases of some related publications may be for an earlier version of the
eV+ system. You need to use them in conjunction with the release notes published since
those books were published.

You may also need to refer to one or more of the manuals listed in the following table.

Manual Material Covered
eV+ Release Notes Late-breaking changes not in manuals; summary of
changes.
ACE User's Guide Describes the ACE user interface, which is used for

configuration, control, and programming of the
Omron Adept robot system.

ACE Sight User's Guide Describes the interface, use, and programming of the
optional ACE Sight vision system.

ACE Sight Reference Guide Describes the ACE Sight vision commands used for
custom vision programming.

AdeptForce VME User's Installation, operation, and programming of the
Guide AdeptForce VME product.
SmartController User's Instructions for setting up, configuring, and

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 16

Dangers, Warnings, Cautions, and Notes in Manual

Manual Material Covered
Guide maintaining the controller on which eV+ runs.
Robot or motion device Instructions for installing and maintaining the motion
user's guides (if connected device connected to your system.
to your system)

Dangers, Warnings, Cautions, and Notes in Manual

There are six levels of special notation used in Omron Adept manuals. In descending order of
importance, they are:

DANGER: This indicates an imminently hazardous electrical situation
which, if not avoided, will result in death or serious injury.

DANGER: This indicates an imminently hazardous situation which, if
not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous electrical situation
which, if not avoided, could result in serious injury or major damage to
the equipment.

WARNING: This indicates a potentially hazardous situation which, if
not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation which, if not avoided, could result
in minor injury or damage to the equipment.

> B B> b P

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 17

Conventions

NOTE: Notes provide supplementary information, emphasize a point or procedure, or give
a tip for easier operation.

Conventions

Typographic Conventions

The following typographic conventions are used throughout this manual:

This Represents

ALL CAPITALS eV+file names, directory names, commands,
keywords, and attributes; also acronyms.

A physical key or button that you must press,
such astheY, N, and ENTER keys.

monospace Monitor displays and code examples.

bold Bold type is used for subroutine names, variable
names, and program names, such as
a.diskcopy. Bold type also is used for window
items that you choose and window items that do
bold/regular not have initial capital letters in all principal
words.

In a typing or entering instructions, anything
that you must type exactly as it appears. For
example, if you are asked to type execute 1
a.diskcopy, you type all the bold characters
exactly as they are printed. What you type is
shown in lowercase letters unless it must be
typed in uppercase letters to work properly. You
may always substitute a currently valid shortcut
form when typing a eV+ command. In order for
the eV+ system to process your typing, you
must conclude your entry by pressing the ENTER
or RETURN key.

In Syntax, place holders, in formal syntax
definitions, for information that you provide. You
must replace such a place holder written in bold
weight but need not replace an optional one,
which is written in regular weight.

italics Indicates new terms and other emphasized

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 18

Conventions

words.

Initial Capitals The name of an object such as a window, screen,
menu, dialog box, or dialog box component.
Examples are the Display menu and the Task
Profiler window.

"Quotation marks" Menu items, prompts, or any literal text that is
being referenced.

Keyboard Conventions

Key combinations appear in the following format:

Notation Meaning

KEY1+KEY2 A plus sign (+) between keys means that you
must press and hold down KEY1, then press
KEY2. For example, "Press CTRL+Z" means that
you press CTRL and hold it down while you press
Z.

Selecting, Choosing, and Pressing Items

In a context using windows, the terms select, choose, and press have different and specific
meanings. Selecting an item usually means marking or highlighting it, as in picking a radio
button. Selecting alone does not initiate an action.

Choosing an item carries out an action. For example, choosing a menu item may open a
window or carry out a command. You can also initiate an action by choosing a command
button (a push button or a standard button). You often must select an item before you can
choose it.

Often you can use a combination of keyboard and mouse techniques for selecting and
choosing.

Pressing refers to physical buttons or keys. For example, you press the save key or press the
ENTER key. By contrast, you select or choose a window button.

Values, Variables, and Expressions

The parameters to eV+ keywords can generally be satisfied with a specific value of the
correct data type, a variable of the correct data type, or an expression that resolves to the
correct type. Unless specifically stated, parameters can be replaced with a value, variable, or
expression (of the correct type). The most common case where a parameter cannot be

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 19

Conventions

satisfied with all three options occurs when data is being returned in one of the parameters.
In this case, a variable must be used; the parameter description states this restriction.

Integers and Real Values

In eV+ integers and real values are not different data types. Real values satisfy parameters
requiring integers by rounding the real value. Where real values are required, an integer is
considered a special case of a real value with no fractional part.

Special Notation

Numbers shown in other than decimal format are preceded with a carat () and the letter H
for hexadecimal or B for binary, and with just a carat for Octal. For example, "HF = A"B1111
=717 =15.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 20

Keyword Overview

Keyword Overview

The following topics are described in this chapter:

New or Enhanced Keywords il
eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 21

New or Enhanced Keywords

New or Enhanced Keywords

For information on new or enhanced keywords listed by eV+ software release, select a link
below:

eV+ v2.x.x Release Notes

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 22

eV+ Language Quick Reference

eV+ Language Quick Reference

This Quick Reference table is arranged alphabetically by command name, click an underlined letter to jump
to the first command that begins with that letter.

A B C D E F G H 1I J K L M

N O P Q R S T UV W X Y 2

Type Description
K Keyword
(0] Operator
PI Program instruction
RF Real-valued function
SW System switch
SP System parameter
TF Transformation function
ST String function
PP Precision point

Keyword Type Description

ABORT PI Terminate execution of an executing program task.
ABOVE PI Request a change in the robot configuration during the next motion

so that the elbow is above the line from the shoulder to the wrist.

ABS RF Return absolute value.

ACCEL PI Set acceleration and deceleration for robot motions. Optionally,
specify a defined acceleration profile.

ACCEL RF Return the current setting for robot acceleration or deceleration
setting or return the maximum allowable percentage limits defined
in the robot configuration profile.

ACOS RF Return the size of the angle (in degrees) that has its trigopnometric
cosine equal to value.

ALIGN PI Align the robot tool Z axis with the nearest world axis.

ALTER PI Specify the magnitude of the real-time path modification that is to be

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 23

eV+ Language Quick Reference

Keyword Type Description

applied to the robot path during the next trajectory
computation.This option is available only if your system is equipped
with the eV+ Extensions option.

ALTOFF PI Terminate real-time path-modification mode (alter mode).

ALTON PI Enable real-time path-modification mode (alter mode), and specify
the way in which ALTER coordinate information will be interpreted.

ALWAYS K Used with certain program instructions to specify a long-term effect.

AMOVE PI Position an extra robot axis during the next joint-interpolated or
straight-line motion to a transformation location.

AND o] Perform the logical AND operation on two values.

ANY PI Signal the beginning of an alternative group of instructions for the
CASE structure.

APPRO PI Start a robot motion toward a location defined relative to specified
location.

APPROS '

ASC RF Return an ASCII character value from within a string.

ASIN RF Return the size of the angle (in degrees) that has its trigopnometric
sine equal to value.

ATANZ2 RF Return the size of the angle (in degrees) that has its trigopnometric
tangent equal to value_1/value_2.

ATTACH PI Make a device available for use by the application program.

AUTO PI Declare temporary variables that are automatically created on the
program stack when the program is entered.

AUTO.POWER.OFF | SW Control whether or not eV+ disables high power when certain
motion errors occur.

BAND (0] Perform the binary AND operation on two values.

BASE PI

BASE TF Return the transformation value that represents the translation and
rotation set by the last BASE command or instruction.

BCD RF Convert a real value to Binary Coded Decimal (BCD) format.

BELOW PI Request a change in the robot configuration during the next motion
so that the elbow is below the line from the shoulder to the wrist.

BELT SW Control the function of the conveyor tracking features of the eV+

system.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 24

eV+ Language Quick Reference

Keyword Type Description

BELT RF Return information about a conveyor belt being tracked with the
conveyor tracking feature.

BELT.MODE SP Set characteristics of the conveyor tracking feature of the eV+
system.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Read multiple digital signals and return the value corresponding to
the binary bit pattern present on the signals.

BMASK RF Create a bit mask by setting individual bits.

BOR) Perform the binary OR operation on two values.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current motion completes.

BSTATUS RF Return information about the status of the conveyor tracking
system.

BXOR) Perform the binary exclusive-OR operation on two values.

BY Complete the syntax of the SCALE and SHIFT functions.

CALIBRATE PI Initialize the robot positioning system with the robot's current
position.

CALL PI Suspend execution of the current program and continue execution
with a new program (that is, a subroutine).

CALLP PI Call a program given a pointer to the program in memory.

CALLS PI Suspend execution of the current program and continue execution
with a new program (that is, a subroutine) specified with a string
value.

CAS RF Compare a real variable to a test value, and conditionally sets a new
value as one indivisible operation.

CASE PI Initiate processing of a CASE structure by defining the value of
interest.

$CHR ST Return a one-character string corresponding to a given ASCII value.

CLEAR.EVENT PI Clear an event associated with the specified task.

CLOSE PI Close the robot gripper.

CLOSEI

COARSE PI Enable a low-precision feature of the robot hardware servo.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 25

eV+ Language Quick Reference

Keyword Type Description

COM (0] Perform the binary complement operation on a value.

CONFIG RF Return a value that provides information about the robot's geometric
configuration, or the status of the motion servo-control features.

Cos RF Return the trigonometric cosine of a given angle.

CP SW Control the continuous-path feature.

CPOFF PI Instruct the eV+ system to stop the robot at the completion of the
next motion instruction (or all subsequent motion instructions) and
null position errors.

CPON PI Instruct the eV+ system to execute the next motion instruction (or
all subsequent motion instructions) as part of a continuous path.

CYCLE.END PI Terminate the executing program in the specified task the next time
it executes a STOP program instruction (or its equivalent).

Suspend processing of an executable program until a program
running in the specified task completes execution.

DBLB RF Return the value of eight bytes of a string interpreted as an IEEE
double-precision floating-point number.

$DBLB ST Return an 8-byte string containing the binary representation of a
real value in double-precision IEEE floating-point format.

DCB RF Convert BCD digits into an equivalent integer value.

$DECODE ST Extract part of a string as delimited by given break characters.

DECOMPOSE PI Extract the (real) values of individual components of a location value.

$DEFAULT ST Return a string containing the current system default device, unit,
and directory path for disk file access.

DEFBELT PI Define a belt variable for use with a conveyor tracking robot.

DEF.DIO PI Assign virtual digital I/O to standard eV+ signal numbers for use by
standard eV+ instructions, functions, and monitor commands.

DEFINED RF Determine whether a variable has been defined.

DELAY PI Cause robot motion to stop for the specified time.

DELAY.IN.TOL SW Controls the timing of COARSE or FINE nulling after eV+ completes a
motion segment.

DELAY.POWER.OFF | SW Enable/disable the ESTOP timer delay feature for servo errors.

DEPART PI Start a robot motion away from the current location.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 26

eV+ Language Quick Reference

Keyword Type Description

DEPARTS

DEST TF Return a transformation value representing the planned destination
location for the current robot motion.

DETACH PI Release a specified device from the control of the application
program.

DEVICE PI Send a command or data to an external device and, optionally,
return data back to the program. (The actual operation performed
depends on the device referenced.)

DEVICE RF Return a real value from a specified device. The value may be data or
status information, depending upon the device and the parameters.

DEVICES PI Send commands or data to an external device and optionally return
data. The actual operation performed depends on the device
referenced.

DISABLE PI Turn off one or more system control switches.

DISTANCE RF Determine the distance between the points defined by two location
values.

DN.RESTART PI Restarts DeviceNet communication if the CanBus goes offline.

DO PI Introduce a DO program structure.

DOS PI Execute a program instruction defined by a string expression.

DRIVE PI Move an individual joint of the robot.

DRY.RUN SW Control whether or not eV+ communicates with the robot.

DURATION PI Set the minimum execution time for subsequent robot motions.

DURATION RF Return the current setting of one of the motion DURATION
specifications.

DX RF Return a displacement component of a given transformation value.

DY

DZ

ELSE PI Separate the alternate group of statementsin an IF ... THEN control
structure.

ENABLE PI Turn on one or more system control switches.

$ENCODE ST Return a string created from output specifications. The string

produced is similar to the output of a TYPE instruction.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 27

eV+ Language Quick Reference

Keyword Type Description

END PI Mark the end of a control structure.

.END PI Mark the end of a eV+ program.

ERROR RF Return the error number of a recent error that caused program
execution to stop or caused a REACTE reaction.

ESTOP PI Assert the emergency-stop signal to stop the robot.

EXECUTE PI Begin execution of a control program.

EXIT PI Branch to the statement following the nth nested loop of a control
structure.

FALSE RF Return the value used by eV+ to represent a logical false result.

FCLOSE PI Close the disk file, graphics window, or graphics icon currently open
on the specified logical unit.

FCMND PI Generate a device-specific command to the input/output device
specified by the logical unit.

FCOPY PI Copy the information in an existing disk file to a new disk file.

FDELETE PI Delete the specified disk file, the specified graphics window and all its
child windows, or the specified graphics icon.

FEMPTY PI Empty any internal buffers in use for a disk file or a graphics window
by writing the buffers to the file or window if necessary.

FINE PI Enable a high-precision feature of the robot hardware servo.

FLIP PI Request a change in the robot configuration during the next motion
so that the pitch angle of the robot wrist has a negative value.

FLTB RF Return the value of four bytes of a string interpreted as an IEEE
single-precision floating-point number.

$FLTB ST Return a 4-byte string containing the binary representation of a real
value in single-precision IEEE floating-point format.

FOPEN PI Create and open a new graphics window or TCP connection, or open
an existing graphics window for subsequent input or output.

FOPENA PI Open a disk file for read-only, read-write, read-write-append, or read-

FOPEND directory, as indicated by the last letter of the instruction name.

FOPENR

FOPENW

FOR PI Execute a group of program instructions a certain number of times.

FORCE.FRAME PI AdeptForce option status and control instructions.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 28

eV+ Language Quick Reference

Keyword Type Description

FRACT RF Return the fractional part of the argument.

FRAME TF Return a transformation value defined by four positions.

FREE RF Return the amount of unused free memory storage space.

FSEEK PI Position a file open for random access and initiate a read operation on
the specified record.

FSET PI Set or modify attributes of a graphics window, serial line, or network
device.

GARC PI Draw an arc or a circle in a graphics window.

GCHAIN PI Draw a chain of points in a graphics window to form a complex figure.

GCLEAR PI Clear an entire graphics window to the background color.

GCLIP PI Set the clipping rectangle for all graphics instructions (except
GFLOOD), to suppress all subsequent graphics that fall outside the
rectangle.

GCOLOR PI Set the foreground and background colors for subsequent graphics
output.

GCOPY PI Copy one region of a window to another region in the same window.

GETC RF Return the next character (byte) from a device or input record on the
specified logical unit.

GET.EVENT RF Return events that are set for the specified task.

GETEVENT PI Return information describing input from a graphics window or input
from the terminal.

GFLOOD PI Flood a region in a graphics window with color.

GGETLINE PI Return pixel information from a single pixel row in a graphics
window.

GICON PI Draw a predefined graphic symbol (icon) in a graphics window.

GLINE PI Draw a single line segment in a graphics window.

GLINES PI Draw multiple line segments in a graphics window.

GLOBAL PI Declare a variable to be global and specify the type of the variable.

GLOGICAL PI Set the logical operation to be performed between new graphics
output and graphics data already displayed, and select which bit
planes are affected by graphics instructions.

GOTO PI Perform an unconditional branch to the program step identified by

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 29

eV+ Language Quick Reference

Keyword Type Description

the given label.

GPANEL PI Draw a rectangular panel with shadowed or grooved edges.

GPOINT PI Draw a single point in a graphics window.

GRECTANGLE PI Draw a rectangle in a graphics window.

GSCAN PI Draw a number of horizontal lines in a graphics window to form a
complex figure.

GSLIDE PI Draw a slide bar in preparation for receiving slide events.

GTEXTURE PI Set the opaque/transparent mode and the texture pattern for
subsequent graphics output.

GTRANS PI Scale, rotate, offset, and apply perspective correction to all
subsequent graphics instructions.

GTYPE PI Display a text string in a graphics window.

HALT PI Stop program execution and do not allow the program to be
resumed.

HAND RF Return the current hand opening.

HERE PI Set the value of a transformation or precision-point variable equal to
the current robot location.

HERE TF Return a transformation value that represents the current location
of the robot tool point.

HOUR.METER RF Return the current value of the robot hour meter.

1D RF Return values that identify the configuration of the current system.

$ID ST Return the system ID string.

IDENTICAL RF Determine whether two location values are exactly the same.

IF... GOTO PI Branch to the specified step label if the value of the logical expression
is TRUE (nonzero).

IF ... THEN PI Conditionally execute a group of instructions (or one of two groups)
depending on the result of a logical expression.

IGNORE PI Cancel the effect of a REACT or REACTI instruction.

INRANGE RF Return a value that indicates whether a location can be reached by
the robot and, if not, why not.

INSTALL PI Install or remove software options available to Omron Adept

systems.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 30

eV+ Language Quick Reference

Keyword Type Description

INT RF Return the integer part of the value.

INTB RF Return the value of two bytes of a string interpreted as a signed 16-
bit binary integer.

$INTB ST Return a 2-byte string containing the binary representation of a 16-
bit integer.

INVERSE TF Return the transformation value that is the mathematical inverse of
the given transformation value.

IOSTAT RF Return status information for the last input/output operation for a
device associated with a logical unit.

IPS K Specify the units for a SPEED instruction as inches per second.

JHERE PI Records the current robot joint positions in real or double-precision
variables. This instruction supports MicroeV+.

JMOVE PI Moves all robot joints to positions described by a list of joint values.
The robot performs a coordinated motion in joint-interpolated mode.
This instruction supports MicroeV+.

JOG PI Moves ("jogs") the specified axis or joint of the robot. Each time JOG
executes, the specified axis or joint moves for 200 ms.

KEYMODE PI Set the behavior of a group of keys on the pendant.

KILL PI Clear a program execution stack and detach any I/O devices that are
attached.

LAST RF Return the highest index used for an array (dimension).

LATCH TF Return a transformation value representing the location of the robot
at the occurrence of the last external trigger or AdeptForce guarded-
mode trigger.

LATCHED RF Return the status of the external trigger and/or an AdeptForce
guarded-mode trigger.

LEFTY PI Request a change in the robot configuration during the next motion
so that the first two links of a SCARA robot resemble a human's left
arm.

LEN RF Return the number of characters in the given string.

LNGB RF Return the value of four bytes of a string interpreted as a signed 32-
bit binary integer.

$LNGBLOCK ST Set the program reaction lock-out priority to the value given.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 31

eV+ Language Quick Reference

Keyword Type Description

MAX RF Return the maximum value contained in the list of values.

MC PI Introduce a monitor command within a command program.

MCS PI Invoke a monitor command from an application program.

MESSAGES SW Enable or disable output to the system terminal from TYPE
instructions.

$MID ST Return a substring of the specified string.

MIN RF Return the minimum value contained in the list of values.

MMPS Specify the units for a SPEED instruction as millimeters per second.

MOD (0] Compute the modulus of two values.

MOVE PI Initiate a robot motion to the position and orientation described by

MOVES the given location.

MOVEC PI Initiate a circular/arc-path robot motion using the positions and
orientations described by the given locations.

MOVEF PI Initiate a three-segment pick-and-place robot motion to the specified

MOVESE destination, moving the robot at the fastest allowable speed.

MOVET PI Initiate a robot motion to the position and orientation described by

MOVEST the given location and simultaneously operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints.

NETWORK RF Return network status and IP address information

NEXT PI Branch to the END statement of the nth nested loop, perform the
loop test, and loop if appropriate.

NOFLIP PI Request a change in the robot configuration during the next motion
so that the pitch angle of the robot wrist has a positive value.

NONULL PI Instruct the eV+ system not to wait for position errors to be nulled at
the end of continuous-path motions.

NOOVERLAP PI Generate a program error if a motion is planned that causes selected
multiturn axes to turn more than around) in order to avoid a limit
stop.

NORMAL TF Correct a transformation for any mathematical round-off errors.

NOT PI Perform logical negation of a value.

NOT.CALIBRATED | SP Indicate (or assert) the calibration status of the robots connected to

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 32

eV+ Language Quick Reference

Keyword Type Description

the system.

NULL PI Instruct the eV+ system to wait for position errors to be nulled at the
end of continuous path motions.

NULL TF Return a null transformation value-one with all zero components.

OFF RF Return the value used by eV+ to represent a logical false result.

ON RF Return the value used by eV+ to represent a logical true result.

OPEN PI Open the robot gripper.

OPENI

OR PI Perform the logical OR operation on two values.

OUTSIDE RF Test a value to see if it is outside a specified range.

OVERLAP PI Disable the NOOVERLAP limit-error checking either for the next
motion or for all subsequent motions.

PACK PI Replace a substring within an array of (128-character) string
variables, or within a (nonarray) string variable.

PANIC PI Simulate an external E-stop or panic button press; stop all robots
immediately, but do not turn off HIGH POWER.

PARAMETER PI Set the value of a system parameter.

PARAMETER RF Return the current setting of the named system parameter.

PAUSE PI Stop program execution but allow the program to be resumed.

#PDEST PP Return a precision-point value representing the planned destination
location for the current robot motion.

PDNT.CLEAR PI Clears the current notification or custom message window, if any,
and returns the T20 pendant back to the Home screen.

PDNT.NOTIFY PI Creates a pendant notification.

PDNT.WRITE PI Sets the pendant’s Custom Message screen.

PENDANT RF Return input from the pendant.

#PHERE PP Return a precision-point value representing the current location of
the currently selected robot.

PI RF Return the value of the mathematical constant pi (3.141593).

#PLATCH PP Return a precision-point value representing the location of the robot

at the occurrence of the last external trigger or AdeptForce guarded-
mode trigger.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 33

eV+ Language Quick Reference

Keyword Type Description

POS RF Return the starting character position of a substring in a string.

POWER SP Control or monitor the status of high power.

#PPOINT PP Return a precision-point value composed from the given
components.

PRIORITY RF Return the current reaction lock-out priority for the program.

PRG.INFO PI [THIS IS NOT DOCUMENTED]

.PROGRAM PI Define the arguments that are passed to a program when it is
invoked.

PROGRAM PI [THIS IS NOT DOCUMENTED]

PROCEED PI Resume execution of an application program.

PROMPT PI Display a string on the system terminal and wait for operator input.

RANDOM RF Return a pseudorandom number.

REACT PI Initiate continuous monitoring of a specified digital signal and
automatically trigger a subroutine call if the signal properly
transitions.

REACTE PI Initiate the monitoring of errors that occur during execution of the
current program task.

REACTI PI Initiate continuous monitoring of a specified digital signal.
Automatically stop the current robot motion if the signal transitions
properly and optionally trigger a subroutine call.

READ PI Read a record from an open file or from an attached device that is not
file oriented. For a network device, read a string from an attached
and open TCP connection.

READY PI Move the robot to the READY location above the workspace, which
forces the robot into a standard configuration.

RELAX PI Limp the pneumatic hand.

RELAXI

RELEASE PI Allow the next available program task to run.

RESET PI Turn off all the external output signals.

RETRY PI Repeat execution of the last interrupted program instruction and
continue execution of the program.

RETURN PI Terminate execution of the current subroutine, and resume

execution of the suspended program at its next step. A program may

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 34

eV+ Language Quick Reference

Keyword Type Description
have been suspended by issuing a CALL, CALLP, or CALLS
instruction, or by the triggering of a REACT, REACTE, or REACTI
condition.

RETURNE PI Terminate execution of an error reaction subroutine and resume
execution of the last-suspended program at the step following the
instruction that caused the subroutine to be invoked.

RIGHTY PI Request a change in the robot configuration during the next motion
so that the first two links of the robot resemble a human's right arm.

ROBOT SwW Enable or disable one robot or all robots.

ROBOT.OPR PI Execute operations that are specific to the currently selected robot or
robot module.

ROBOT.OPR RF Returns robot-specific data for the currently selected robot.

RUNSIG PI Turn on (or off) the specified digital signal as long as execution of the
invoking program task continues.

RX TF Return a transformation describing a rotation.

RY

Rz

SCALE TF Return a transformation value equal to the transformation
parameter with the position scaled by the scale factor.

SCALE.ACCEL SW Enable or disable the scaling of acceleration and deceleration as a
function of program speed, as long as the program speed is below a
preset threshold.

SCALE.ACCEL.ROT | SW Specify whether or not the SCALE.ACCEL switch takes into account
the Cartesian rotational speed during straight-line motions.

SELECT PI Select a unit of the named device for access by the current task.

SELECT RF Return the unit number that is currently selected by the current
task for the device named.

SET PI Set the value of the location variable on the left equal to the location
value on the right of the equal sign.

SET.EVENT PI Set an event associated with the specified task.

#SET.POINT PP Return the commanded joint-angle positions computed by the
trajectory generator during the last trajectory-evaluation cycle.

SETBELT PI Set the encoder offset of the specified belt variable equal to the value

of the expression.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 35

eV+ Language Quick Reference

Keyword Type Description

SETDEVICE PI Initialize a device or set device parameters. (The actual operation
performed depends on the device referenced.)

SHIFT TF Return a transformation value resulting from shifting the position of
the transformation parameter by the given shift amounts.

SIG RF Returns the logical AND of the states of the indicated digital signals.

SIG.INS RF Return an indication of whether a digital I/O signal is installed in the
system, or whether a software signal is available in the system.

SIGN RF Return the value 1, with the sign of the value parameter.

SIGNAL PI Turn on or off external digital output signals or internal software
signals.

SIN RF Return the trigonometric sine of a given angle.

SINGLE PI Limit rotations of the robot wrist joint to the range -180 degrees to
+180 degrees.

SOLVE.ANGLES PI Compute the robot joint positions (for the current robot) that are
equivalent to a specified transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration specified by an
array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given set of joint
positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot motions.

SPEED RF Return one of the system motion speed factors.

SPIN PI Rotate one or more joints of the selected robot at a specified speed.

SQR RF Return the square of the parameter.

SQRT RF Return the square root of the parameter.

STATE RF Return a value that provides information about the robot system
state.

STATUS RF Return status information for an application program.

STOP PI Terminate execution of the current program cycle.

STRDIF RF Compare two strings byte by byte for the purpose of sorting. This
function always compares bytes exactly. It ignores the setting of the
UPPER system switch.

SWITCH PI Enable or disable a system switch based on a value.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 36

eV+ Language Quick Reference

Keyword Type Description

SWITCH RF Return an indication of the setting of a system switch.

$SYMBOL ST Determine the user symbol that is referenced by a pointer previously
obtained with the SYMBOL.PTR real-valued function.

SYMBOL.PTR RF Determine the value of a pointer to a user symbol in eV+ memory.

$SYS.INFO ST This string function is intended to provide general system
information. It also provides access to the ActiveVR log data.

SYS.INIT PI [THIS IS NOT DOCUMENTED]

TAS RF Return the current value of a real-valued variable and assign it a new
value. The two actions are done indivisibly so that no other program
task can modify the variable at the same time.

TASK RF Return information about a program execution task.

TIME PI Set the date and time.

TIME RF Return an integer value representing either the four-digit date or the
time specified in the given string parameter.

$TIME ST Return a string value containing either the current system date and
time or the specified date and time.

$TIME4 ST Return a string value containing either the current system four-digit
date and time or the specified four-digit date and time.

TIMER PI Set the specified system timer to the given time value.

TIMER RF Return the current time value of the specified system timer.

TOOL PI Set the internal transformation used to represent the location and
orientation of the tool tip relative to the tool mounting flange of the
robot.

TOOL TF Return the value of the transformation specified in the last TOOL
command or instruction.

TPS RF Return the number of ticks of the system clock that occur per second
(Ticks Per Second).

TRANS TF Return a transformation value computed from the given X, Y, Z
position displacements and vy, p, r orientation rotations.

TRANSB TF Return a transformation value represented by a 48-byte string.

$TRANSB ST Return a 48-byte string containing the binary representation of a
transformation value.

$TRUNCATE ST Return all characters in the input string until an ASCII NULL (or the

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 37

eV+ Language Quick Reference

Keyword

Type

Description

end of the string) is encountered.

TYPE

PI

Display the information described by the output specifications on the
system terminal. A blank line is output if no argument is provided.

$UNPACK

ST

Return a substring from an array of 128-character string variables.

UNTIL

PI

Indicate the end of a DO ... UNTIL control structure and specify the
expression that is evaluated to determine when to exit the loop. The
loop continues to be executed until the expression value is nonzero.

UPPER

SwW

Control whether or not the case of each character is ignored when
string comparisons are performed.

VAL

RF

Return the real value represented by the characters in the input
string.

VALUE

PI

Indicate the values that a CASE statement expression must match
in order for the program statements immediately following to be
executed.

VLOCATION

TF

Returns a Cartesian transform result of the execution of the specified
vision sequence. The returned value is a transform result: x, y, z,
yaw, pitch, roll. For details, see the ACE Sight Reference Guide.

VPARAMETER

PI

Sets the current value of a vision tool parameter. For details, see the
ACE Sight Reference Guide.

Can also be used with the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VPARAMETER

RF

Gets the current value of a vision tool parameter. For details, see the
ACE Sight Reference Guide.

VRESULT

RF

Returns a specified result of a vision tool, or returns the status of a
specified tool. For details, see the ACE Sight Reference Guide.

VRUN

PI

Initiates the execution of a vision sequence. For details, see the ACE
Sight Reference Guide.

Can also be used with the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VSTATE

RF

Returns the state of the execution of a sequence. For details, see the
ACE Sight Reference Guide.

Can also be used with the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VTIMEOUT

SP

Sets a timeout value so that an error message is returned if no
response is received following a vision command. For details, see the
ACE Sight Reference Guide.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 38

eV+ Language Quick Reference

Keyword Type Description

VWAITI PI Waits efficiently until the specified vision sequence reaches the state
specified by the type parameter. For details, see the ACE Sight
Reference Guide.

Can also be used with the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

WAIT PI Put the program into a wait loop for one system cycle. If a condition
is specified, wait until the condition is TRUE.

WAIT.EVENT PI Suspend program execution until a specified event has occurred, or
until a specified amount of time has elapsed.

WHILE PI Initiate processing of a WHILE structure if the condition is TRUE or
skipping of the WHILE structure if the condition is initially FALSE.

WINDOW PI Set the boundaries of the operating region of the specified belt
variable for conveyor tracking.

WINDOW RF Return a value that indicates where the location described by the
belt-relative transformation value is relative to the predefined
boundaries of the working range on a moving conveyor belt.

WRITE PI Write a record to an open file, or to any I/O device. For a network
device, write a string to an attached and open TCP connection.

XOR 0] Perform the logical exclusive-OR operation on two values.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 39

Keyword Descriptions

Keyword Descriptions

The following topics are described in this chapter:

Descriptions of eV+ Keywords il
Documentation Conventions for Keywords

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 41

Descriptions of eV+ Keywords

Descriptions of eV+ Keywords

This chapter details the keywords in the eV+ programming language. The functional groups
of programming keywords are:

» Program Instructions

» Functions

» System Parameters

» System Switches
This manual often refers to monitor commands. Monitor commands are part of the eV+

operating system. The eV+ operating system commands are detailed in the eV+ Operating
System Reference Guide.

If your system is equipped with AdeptVision, additional program instructions, functions,
switches, parameters, and monitor commands are detailed in the AdeptVision Reference
Guide.

The keywords are presented in alphabetical order, with the description for each keyword
starting on a new page. For details on what is included, see Documentation Conventions for
Keywords.

Documentation Conventions for Keywords

The keyword type (function, program instruction, and so on) is shown at the top of the page.

Syntax

An abbreviated syntax is shown for some keywords. This is done when the abbreviated form
is the most commonly used variation of the complete syntax.

This section presents the syntax of the keyword. The keyword is shown in uppercase, and the
arguments are shown in lowercase. The keyword must be entered exactly as shown?.
Parentheses must be placed exactly as shown. Required keywords, parameters, and marks
such as equal signs and parentheses are shown in bold type; optional keywords, parameters,
and marks are shown in regular type. In the example:

KEYWORD req.paraml = req.param2 OPT.KEYWORD opt.param

KEYWORD must be entered exactly as shown,t

req.paraml must be replaced with a value, variable,
or expression,

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 42

Documentation Conventions for Keywords

= the equal sign must be entered,

req.param2 must be replaced with a value, variable,
or expression,

OPT.KEYWORD can be omitted but must be entered
exactly as shown if used,

opt.param may be replaced with a value, variable,
or expression but assumes a default
value if not used.

Function

This section gives a brief description of the keyword.

Usage Considerations

This section lists any restrictions on the keyword's use. If specific hardware or other options
are required, they are listed here.

Parameters

The requirements for input and output parameters are explained in this section. If a
parameter is optional, it is noted here. When an instruction line is entered, optional
parameters do not have to be specified and the system will assume a default. Unspecified
parameters at the end of an argument list can be ignored. Unspecified parameters in the
middle of an argument list must be represented by commas. For example, the following
keyword has four parameters-the first and third are used, and the second and fourth are left
unspecified:

SAMPLE.INST var_1,,"test"

String and numeric input parameters can be constant values (3.32, part_1, etc.) or any
legitimate variable names. The data type of the constant or variable must agree with that
expected by the instruction. String variables must be preceded with a $. Precision-point
variables must be preceded with a #. Belt variables must be preceded with a %. String
constants must be enclosed in quotes. Real and integer constants can be used without
modification. Note that some eV+ keywords cannot be used as variable names.

Details

This section describes the function of the keyword in detail.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 43

Documentation Conventions for Keywords

Examples

Examples of correctly formed instruction lines are presented in this section.

Related Keywords

Additional keywords that are similar or are frequently used in conjunction with this
instruction are listed here.

Any related keywords that are monitor commands are described in the eV+ Operating
System Reference Guide.

1In the program editor, instructions can be abbreviated to a length that uniquely identifies
the keyword.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 44

ABORT program instruction

ABORT program instruction

Syntax

ABORT task_num

Function

Terminate execution of an executing program task.

Usage Considerations
ABORT is ignored if no program is executing as the specified task.

ABORT does not force DETACH or FCLOSE operations on the disk or serial communication
logical units. If the program has one or more files open and you decide not to resume
execution of the program, use a KILL command to close all the files and detach the logical
units.

Parameter
task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be terminated. The
default task is 0.
Details

Terminates execution of the specified active executable program after completion of the step
currently being executed. If the task is controlling a robot, robot motion terminates at the
completion of the current motion. (Program execution can be resumed with the PROCEED
command.)

Related Keywords

ABORT monitor command

CYCLE.END monitor command

CYCLE.END program instruction

ESTOP monitor command

ESTOP program instruction

EXECUTE program instruction

KILL monitor command

KILL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 45

ABORT program instruction

PANIC monitor command
PANIC program instruction
PROCEED monitor command
STATUS monitor command

STATUS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 46

ABOVE program instruction

ABOVE program instruction

Syntax
ABOVE

Function

Request a change in the robot configuration during the next motion so that the elbow is
above the line from the shoulder to the wrist.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support an ABOVE configuration, this instruction is ignored by
the robot (SCARA robots, for example, cannot have an ABOVE configuration).

The ABOVE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the ABOVE instruction
causes an error.

The following figure shows the ABOVE and BELOW configurations.

Above

ABOVE/BELOW

Related Keywords

BELOW program instruction
CONFIG real-valued function
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 47

ABS real-valued function

ABS real-valued function

Syntax
ABS (value)

Function

Return absolute value.
Parameter

value Real-valued expression.

Details

Returns the absolute value (magnitude) of the argument provided.

Examples
ABS (0.123) ;Returns 0.123
ABS (-5.462) ;Returns 5.462
ABS (1.3125E-2) ;Returns 0.013125

belt.length = part.size/ABS (belt.scale)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 48

ACCEL program instruction

ACCEL program instruction

Syntax

ACCEL (profile) acceleration, deceleration

Function

Set acceleration and deceleration for robot motions. Optionally, specify a defined acceleration
profile.

Usage Considerations

The ACCEL instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the ACCEL instruction
causes the error *Robot not attached to this program*.

Before an acceleration/deceleration profile can be used, it must be defined for the selected
robot (profile 0 is always defined). (The robot configuration is edited using the ACE software,
see the ACE User's Guide.)

Parameters

profile Optional integer specifying the acceleration profile to use. Acceptable
values are 0 to 8 (depending on the number of defined profiles). The
default is the last specified profile (see Details for the number of the
start-up profile). If a profile is specified that has not been defined,
profile 0 is used.

acceleration Optional real value, variable, or expression considered as a
percentage of the maximum possible acceleration.

deceleration Optional real value, variable, or expression considered as a

percentage of the maximum possible deceleration.

The value should normally be in the range of 1 to 100 (upper limits
greater than 100 may be established by the robot manufacturer). If
an out-of-range value is specified, the nearest extreme value will be
used.

If a parameter is omitted, its current setting remains in effect.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 49

ACCEL program instruction

Details

If profile 0 is used, a square wave acceleration profile is generated at the beginning and end of
the motion.

If a profile is specified, that profile is invoked for subsequent robot motions. Defined profiles
set the maximum rate of change of the acceleration and deceleration. The values set with
this instruction define the maximum acceleration and deceleration magnitudes that are
achieved.

When the eV+ system is initialized, the profile, acceleration, and deceleration values are set
toinitial values, which can be defined by the ACE controller configuration tools. As delivered
by Omron Adept, the initially selected profile may be either 0 or 1 depending on the type of
robot. The settings are not affected when program execution starts or stops, or when a ZERO
command is processed.

Normally, the robot manufacturer sets the 100% acceleration and deceleration values to
rates that can be achieved with typical payloads and robot link inertias. However, because the
actual attainable accelerations vary greatly as a function of the end-effector, payload, and the
initial and final locations of a motion, accelerations greater than 100% may be permitted for
your robot. The limits for the maximum values are defined by the robot manufacturer and
vary from one type of robot to the next. If you specify a higher acceleration than is permitted,
the limit established by the robot manufacturer is utilized.

You can use the functions ACCEL(3) and ACCEL(4) to determine the maximum allowable
acceleration and deceleration settings.

For a given motion, the maximum attainable acceleration may actually be less than what you
have requested. This occurs when a profile with a nonzero acceleration ramp time is used and
there is insufficient time to ramp up to the maximum acceleration. That is, for a given jerk, a
specific time must elapse before the acceleration can be changed from zero to the specified
maximum value. If the maximum acceleration cannot be achieved, the trapezoidal profile is
reduced to a triangular shape. This occurs under two circumstances:

1. The motion is too short. In this case, the change in position is achieved before the
maximum acceleration can be achieved.

2. The maximum motion speed is too low. In this case, the maximum speed is achieved
before the maximum acceleration.

In both of these situations, raising the maximum acceleration and deceleration values does
not affect the time for the motion.

Hint: If you increase the maximum acceleration and deceleration values but the motion time
does not change, try the following: increase the program speed, switch to an acceleration
profile that allows faster acceleration ramp times, or switch to acceleration profile 0, which
specifies a square-wave acceleration profile.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 50

ACCEL program instruction

NOTE: This type of acceleration limiting cannot occur with acceleration profile 0 because
a square-wave acceleration instantaneously changes acceleration values without
ramping.

Examples

Set the default acceleration time to 50% of normal and the deceleration time to 30% of
normal:

ACCEL 50, 30

Change the deceleration time to 60% of normal; leave acceleration alone:

ACCEL , 60

Reduce the acceleration and deceleration to one half of their current settings:

ACCEL ACCEL(1)/2, ACCEL(2)/2

Invoke defined profile #2 and set the acceleration magnitude to 80% of the defined rate:

ACCEL (2) 80

Related Keywords
ACCEL real-valued function
DURATION program instruction
SCALE.ACCEL system switch
SELECT program instruction
SELECT real-valued function
SPEED monitor command

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 51

ACCEL real-valued function

ACCEL real-valued function

Syntax
ACCEL (select)

Function

Return the current setting for robot acceleration or deceleration setting or return the
maximum allowable percentage limits defined in the robot configuration profile. (The robot
configuration is edited using the ACE software, see the ACE User's Guide.)

Usage Considerations

The ACCEL function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the ACCEL function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Parameter

select Real-valued expression, the result of which is rounded to an integer to
select the value that is returned.

select Value returned

0 Number of selected acceleration profile

1 Acceleration

2 Deceleration

3 Maximum allowable percentage acceleration

4 Maximum allowable percentage deceleration

5 Program speed below which acceleration and deceleration are scaled
proportional to a program's speed setting when the SCALE.ACCEL
system switch is enabled

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 52

ACCEL real-valued function

Examples
ACCEL (1) ;Return the current acceleration setting.
ACCEL (2) ;Return the current deceleration setting.

Related Keywords
ACCEL program instruction
SCALE.ACCEL system switch
SELECT real-valued function

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 53

ACOS real-valued function

ACOS real-valued function

Syntax
ACOS (value)

Function

Return the size of the angle (in degrees) that has its trigonometric cosine equal to value.

Usage Considerations
The value parameter must be in the range of -1.0 to +1.0.

Any value outside this range will cause the error *Illegal value*.

Parameter

value Real-valued expression that defines the cosine value to be considered.

Details

Returns the inverse cosine (arccosine) of the argument, which is assumed to be in the range
of -1.0 to +1.0. The resulting value is always in the range of 0.0 to +180.0, inclusive.

Examples
ACOS (0) ;Returns 90
ACOS (-1) ;Returns 180
ACOS(0.1) ;Returns 84.2608295
ACOS(0.5) ;Returns 60

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored and manipulated as double-
precision values. The LISTR monitor command will display real values to full precision.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 54

ALIGN program instruction

ALIGN program instruction

Syntax
ALIGN

Function

Align the robot tool Z-axis with the nearest world axis.

Usage Considerations

The ALIGN instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the system is not configured to control a robot, executing the ALIGN instruction causes an
error.
Details

Causes the tool to be rotated so that its Z-axis is aligned parallel to the nearest axis of the
World coordinate system. This instruction is primarily useful for lining up the tool before a
series of locations is taught. This is most easily done by using the monitor DO command.

Related Keywords
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 55

ALIGN transformation function

ALIGN transformation function

Syntax

ALIGN (location)

Function

Computes and returns the aligned version of the location parameter.

Parameter

location Transformation value to be used as a reference.

Details

Returns a modified version of the input location that is aligned parallel to the nearest axis of
the World coordinate system. This instruction is primarily useful for lining up the tool before a
series of locations is taught.

Related Keywords

SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 56

ALWAYS keyword

ALWAYS keyword

Syntax
...ALWAYS

Function

Used with certain program instructions to specify a long-term effect.

Details

ALWAYS can be specified with any of the instructions listed below as related keywords. When
ALWAYS is specified, the effect of the instruction continues until explicitly disabled.
Otherwise, the effect of the instruction applies only to the next robot motion.

Examples
Permanently set the robot motion speed:

SPEED 50 ALWAYS

Permanently set loose-tolerance servo mode:

COARSE ALWAYS

Related Keywords
COARSE program instruction
CPOFF program instruction
CPON program instruction
DURATION program instruction
FINE program instruction
MULTIPLE program instruction
NONULL program instruction
NOOVERLAP program instruction
NULL program instruction
OVERLAP program instruction
SINGLE program instruction

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 58

AND operator

AND operator

Syntax

...value AND value...

Function

Perform the logical AND operation on two values.

Details

The AND operator operates on two values, resulting in their logical AND combination. For
example, during the AND operation

c = a AND Db

the following four situations can occur:

a b c
FALSE FALSE -> FALSE
FALSE TRUE -> FALSE
TRUE FALSE -> FALSE
TRUE TRUE -> TRUE

The result is TRUE only if both of the two operand values are logically TRUE. To review the
order of evaluation for operators within expressions, see the section Order of Evaluation in
the eV+ Language User's Guide.

Example

;The instructions following the IF will be executed if
;both "ready" is TRUE (nonzero) and "count" equals 1.
IF ready AND (count == 1) THEN

Related Keywords
BAND operator

OR operator

XOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 59

ANY program instruction

ANY program instruction

Syntax
ANY

Function

Signal the beginning of an alternative group of instructions for the CASE structure.

Usage Considerations

The ANY instruction must be within a CASE structure.

Details

See the description of the CASE structure.

Related Keywords
CASE program instruction

VALUE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 60

APPRO program instruction

APPRO program instruction

Syntax
APPRO location, distance
APPROS location, distance

Function

Start a robot motion toward a location defined relative to specified location.

Usage Considerations
APPRO causes a joint-interpolated motion.

APPROS causes a straight-line motion, during which no changes in configuration are
permitted.

The APPRO and APPROS instructions can be executed by any program task as long as the
task has attached a robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions will cause
an error.
Parameters

location Transformation value that defines the basis for the final location.

distance Real-valued expression that specifies the distance along the robot tool Z

axis between the specified location and the actual desired destination.

A positive distance sets the tool back (negative tool-Z) from the
specified location; a negative distance offsets the tool forward (positive
tool-2).

Details

These instructions initiate a robot motion to the orientation described by the given location
value. The position of the destination location is offset from the given location by the
distance given, measured along the tool Z axis.

Examples

APPRO place,offset

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 61

APPRO program instruction

Moves the tool, by joint-interpolated motion, to a location offset millimeters from that defined
by the transformation place. The offset is along the resultant Z axis of the tool.

APPROS place,-50

Moves the tool along a straight line to a location 50 millimeters from that defined by the
transformation place, with the offset along the resultant Z axis of the tool to a location
beyond the location place.

Related Keywords
DEPART program instruction
DEPARTS program instruction
MOVE program instruction
MOVES program instruction
MOVEF program instruction
MOVESF program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 62

ASC real-valued function

ASC real-valued function

Syntax

ASC (string, index)

Function

Return an ASCII character value from within a string.

Parameters

string

String expression from which the character is to be picked. If the string
is empty, the function returns the value -1.

index Optional real-valued expression defining the character position of
interest. The first character of the string is selected if the index is
omitted or hasa valueof O or 1.
If the value of the index is negative, or greater than the length of the
string, the function returns the value -1.
Details

The ASCII value of the selected character is returned as a real value.

Examples
;Returns the ASCII value of the letter "a".
ASC ("sample", 2)

;Returns the ASCII value of the first character of the
;string contained in the variable S$name.

ASC ($name)
;Uses the value of the real variable "i" as an index to
;the character of interest in the string contained in the

;variable "$system".

ASC ($system, 1)

Related Keywords

$CHR string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 63

ASC real-valued function

VAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 64

ASIN real-valued function

ASIN real-valued function
Syntax

ASIN (value)

Function

Return the size of the angle (in degrees) that has its trigonometric sine equal to value.

Usage Considerations
The value parameter must be in the range of -1.0 to +1.0.

Any value outside this range will cause the error *Illegal value*.

Parameter

value Real-valued expression that defines the sine value to be considered.

Details

Returns the inverse sine (arcsine) of the argument, which is assumed to be in the range of -
1.0 to +1.0. The resulting value is always in the range of -90.0 to +90.0, inclusive.

Examples
ASIN(0) ;Returns 0
ASIN(-1) ;Returns -90
ASIN(0.1) ;Returns 5.73917047
ASIN(0.5) ;Returns 30

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored and manipulated as double-
precision values. The LISTR monitor command will display real values to full precision.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 65

ATAN2 real-valued function

ATAN2 real-valued function

Syntax

ATAN2 (value_1, value_2)

Function

Return the size of the angle (in degrees) that has its trigonometric tangent equal to value_
1/value_2.

Usage Considerations

The returned value is zero if both parameter values are zero.

Parameters

value_1 Real-valued expression.

value_2 Real-valued expression.

Examples
ATAN2 (0.123,0.251) ;jReturns 26.1067
ATAN2 (-5.462,47.2) ;Returns -6.600926
ATAN2 (1.3125E+2,-1.3) ;Returns -90.56748

slope = ATANZ2 (rise, run)

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored and manipulated as double-
precision values. The LISTR monitor command will display real values to full precision.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 66

ATTACH program instruction

ATTACH program instruction

Syntax

ATTACH (lun, mode) $device

Function

Make a device available for use by the application program.

Usage Considerations

The robot is automatically attached when the EXECUTE monitor command or program
instruction is processed for task 0 (except when the DRY.RUN system switch is enabled). All
the other logical units are automatically detached when program execution begins.

If the system terminal or the pendant was attached when a program stopped executing, it is
automatically reattached if execution of the program is resumed with the PROCEED, RETRY,
SSTEP, or XSTEP commands.

Parameters

lun The logical unit number to associate with the attached device. The
interpretation of this parameter depends on the value of the mode
parameter, as follows:

If bit 3 of the mode parameter is 0, this parameter is optional
(defaulting to 0, to attach the robot); and it can be a real value,
variable, or expression (interpreted as an integer) in the range 0 to 24
that specifies the logical unit to be attached. See the Details section for
the default association of logical units with devices. If the logical unit
specified is not 0, you can use the $device parameter to override the
default device for the logical unit.

If bit 3 of the mode parameteris 1, this parameter is required and must
be a real variable. In this case, the eV+ system attaches the device
specified by the $device parameter and automatically assigns a logical
unit number to this parameter. If all the logical units are in use, the
parameteris set to -1 . eV+ assigns a value to the lun parameter even if
the ATTACH request fails.

mode Optional real value, variable, or expression (interpreted as a bit field)
that defines how the ATTACH request is to be processed. The value
specified is interpreted as a sequence of bit flags as detailed below. All
the bits are assumed to be clear if no value is specified.

Bit 1 (mask value = 1) - (LSB) Queue (0) versus Fail (1)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 67

ATTACH program instruction

This bit controls how the device driver responds to the attach request
from the control program task. (The device driver is an internal system
task that is separate from the control program task.) For most
applications, this bit should be set.

If this bit is clear, and the device is already attached by another control
program task, the driver queues this attach request and signals the
control program that the attach is not complete. The attachment will
complete when the device becomes available.

If this bit is set, and the device is already attached by another control
program task, the device driver immediately signals that the attach
request has failed.

The function IOSTAT(lun) can be used to determine the success or
failure of the attachment. A positive value from IOSTAT indicates
successful completion; zero indicates the attachment has not
completed; a negative value indicates completion with an error.

Bit 2 (mask value = 2) - Wait (0) versus No-wait (1)

This bit controls whether or not the control program task waits for a
response from the device driver. For most applications, this bit should
not be set.

If this bit is clear, program execution waits for the device driver to signal
the result of the attach request.

If this bit is set, program execution does not wait for the result of the
attach request. The program must then use the function IOSTAT(lun)
to determine if the attachment has succeeded (see earlier text). If the
program attempts to READ from or WRITE to the logical unit while the
attachment is pending, program execution then waits for the
attachment to complete.

Bit 3 (mask value = 4) - Specify LUN (0) versus Have LUN
Assigned (1)

This bit determines how the lun parameter is processed.

If this bit is clear, the device corresponding to the value of lun is
attached. That is, the value of the lun parameter specifies the device
that is to be attached (according to the table in the Details section)
except when a different device is specified with the $device parameter.

If this bit is set, the device to be attached is specified by the $device
parameter (which should not be omitted). In this case, a logical unit is
automatically selected, and the value of the lun parameteris set by the
ATTACH instruction. eV+ assigns a value to lun even if the ATTACH
request fails. (This mode cannot be used to attach the robot or

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 68

ATTACH program instruction

pendant.)
$device Optional string constant, variable, or expression that identifies the
device to be attached. If bit 3 of the mode parameteris 0, this
parameter is used to override the default device associated with the
value of the lun parameter (except that logical unit 0 is always the
robot).
The acceptable device names are shown in the following table.
Acceptable Device Names to Be Attached
Device Meaning
DISK Physical drive in the controller (disk orSecure Digitalcard)
DEVICENET Access devices connected to DeviceNet
MONITOR The current monitor window or operator's terminal
SERIAL:n Global serial line (n = 0, 1, 2 or 3). For the SmartController EX,
- SERIAL:0 is RS232/TERM,
- SERIAL:1 isRS232-1,
- SERIAL:2 isRS232-2,
- SERIAL:3 isRS-422/485
SYSTEM Disk device, currently set with the CD or DEFAULT command
TCP TCP protocol device driver
TFTP Access the TFTP server to read files
ubP UDP protocol device driver
Details

The robot must remain attached by a robot control program for the program to command
robot. When the robot is detached (see the DETACH instruction), however,
you can use the manual control pendant to move the robot under directions from the
application program. This is useful, for example, for application setup sequences. (The belt

motion of the

and vision calibration programs provided by Omron Adept use this technique.)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 69

ATTACH program instruction

Program task 0 automatically attaches robot #1 when that task begins execution. A robot
control program executed by any of the other program tasks must explicitly attach the robot.

Any task can attach to any robot, provided that the robot is not already attached by a
different task. The robot that is attached by an ATTACH instruction is the one that was last
specified by a SELECT instruction executed by the current task (see the SELECT instruction).
If no SELECT instruction has been executed, then robot #1 is attached. The SELECT
instruction can be used to select a different robot only if no robot is currently attached to the
task.

To successfully attach the robot, the system must be in COMP mode. Otherwise (for mode bit
1 = 0), program execution is suspended (without notice) until the system is placed in COMP
mode. This situation can be avoided in two ways: (1) use the STATE function to determine if
the system is in COMP mode before executing an ATTACH instruction, (2) set bit 1 in the
mode value, and use the IOSTAT function to determine the success of the ATTACH
instruction.

When the system terminal (logical unit 4) is attached, all keyboard input will be buffered for
input requests by the program.

NOTE: When the system terminal is attached, a user is not able to type ABORT to
terminate program execution. The program must provide a means for fielding a
termination request, or you must use the pendant or emergency stop switch to stop
program execution.

When a DISK device is attached, it allows a program to read and write data from and to files.
DISK refers to the Secure Digital (SD) card. One of the FOPEN instructions must be used to
specify which file to access. WRITE and READ instructions can then be used to transfer
information to and from the file. Also, FCMND instructions can be used to send commands to
the file system.

When a TFTP device is attached, it allows a program to read a file from an TFTP server.

When a SERIAL:n serial communication line is attached, it can be used to send and receive
information to and from another system. As with disk I/O, WRITE and READ instructions are
used for the information transfer. For the details on physical connectors and corresponding
eV+ designations, see: Table 3-5. Serial Connectors and eV+ Designations in the
SmartController User's Guide.

When mode bit 3 = 0 and the $device parameter is omitted, the logical unit number
implicitly specifies the corresponding default device from the following table.

Default Device Numbers Supplied by the LUN

Number Device

0 Robot (default when lun is omitted)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 70

ATTACH program instruction

Number Device

2 System terminal

3 System terminal

4 System terminal

5 Disk

6 Disk

7 Disk

8 Disk

9 No default device

10 Serial communication line (SERIAL:0)
11 Serial communication line (SERIAL:1)
12 Serial communication line (SERIAL:2)
13 Serial communication line (SERIAL:3)
14 No default device

15 No default device

16 No default device

17 Disk

18 Disk

19 Disk

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 71

ATTACH program instruction

Number Device

25-31 No default devices

NOTE:
1. There are currently no default LUNs assigned for serial communication lines
Local #3 or Local #4.

Examples

« Take over control of the robot:

ATTACH

« Connect to global serial line 1; wait for it to become available if another task has it
attached; return the assigned logical unit numberin lun:

ATTACH (lun, 4) "serial:1"

« The nextinstruction is similar to the previous one, but this one requires use of the
IOSTAT function to determine if another task has the serial line attached:

ATTACH (lun, 5) "serial:1"

« Attach to the TCP device driver with automatic allocation of a logical unit number:

ATTACH (lun, 4) "TCP"

Related Keywords
DETACH program instruction
FSET program instruction
IOSTAT real-valued function

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 72

AUTO program instruction

AUTO program instruction

Syntax

AUTO type variable, ..., variable

Function

Declare temporary variables that are automatically created on the program stack when the
program is entered.

Usage Considerations

AUTOmatic variables have an undetermined value when a program is first entered (but they
are not necessarily undefined), and they have no value after the program exits.

AUTO statements must appear before any executable instruction in the program-only the
.PROGRAM statement, comments, blank lines, GLOBAL and LOCAL statements, and other
AUTO statements may precede this instruction.

If a variable is listed in an AUTO statement, any global variables with the same name cannot
be accessed directly by the program.

The values of AUTOmatic variables are not saved by the STORE or restored by the LOAD
monitor commands.

Parameters

type Optional keyword REAL, DOUBLE, or LOC, indicating that all the
variables in this statement are to be single precision, double precision,
or location variables. (A location can be a transformation, precision
point, or belt variable.)

If this keyword is omitted, the type of each variable is determined by its
use within the program. An error is generated if the type cannot be
determined from usage.

variable Name of a variable of any data type available with eV+ (belt, precision
point, real-value, string, and transformation). Each variable can be a
simple variable or an array. If the type parameter is specified (see
below), all the variables must match that type. Array variables must
have their indexes specified explicitly, indicating the highest valid index
for the array.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 73

AUTO program instruction

Details

This instruction is used to declare variables to be defined only within the current program.
That is, an AUTOmatic variable can be referenced only by the specific calling instance of a
program. Also, the names of AUTOmatic variables can be selected without regard for the
names of variables defined in any other programs.

AUTOmatic variables are allocated each time the program is called, and their values are not
preserved between successive subroutine calls. These values can be displayed via monitor
commands only when the program task is inactive but is on an execution stack. When a
program is first entered, automatic variables have arbitrary, undetermined values (and they
are not necessarily undefined). AUTOmatic variables are lost when the program exits.

Unlike a LOCAL variable, a separate copy of an AUTOmatic variable is created each time a
program is called, even if it is called simultaneously by several different program tasks, or
called recursively by a single task. If a program that uses LOCAL or global variables is called by
several different program tasks, or recursively by a single task, the values of those variables
can be modified by the different program instances and can cause very strange program
errors. Therefore, AUTOmatic variables should be used for all temporary local variables to
minimize the chance of such errors.

Variables can be defined as GLOBAL, AUTOmatic, or LOCAL. An attempt to define AUTOmatic,
GLOBAL, or LOCAL variables with the same name will result in the error message *Attempt to
redefine variable class*.

Variables can be defined only once within the same context (AUTOmatic, LOCAL, or GLOBAL).
Attempting to define a variable more than once (that is, with a different type) will yield the
error message

Attempt to redefine variable type

AUTOmatic array variables must have the size of each dimension specified in the AUTO
statement. Each index specified must represent the last element to be referenced in that
dimension. The first element allocated always has index value zero. For example, the
statement

AUTO LOC points[3,5]

allocates a transformation array with 24 elements. The left-hand index ranges from 0 to 3,
and the right-hand index ranges from 0 to 5.

The storage space for AUTOmatic variables is allocated on the program execution stack. If the
stack is too small for the number of AUTOmatic variables declared, the task execution will
stop with the error message

Too many subroutine calls

If this happens, use the STATUS monitor command to determine how much additional stack
space is required. Then, use the STACK monitor command to increase the stack size and then
issue the RETRY monitor command to continue program execution.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 74

AUTO program instruction

AUTOmatic variables cannot be deleted with the DELETE_ commands.

AUTOmatic variables can be referenced with monitor commands such as BPT, DELETE_, DO,
HERE, LIST_, POINT, TEACH, TOOL, and WATCH by using the optional context specifier @.
The general syntax is:

command @task:program command arguments

Examples

« Declare the variables loc.a, $ans, and i to be AUTOmatic in the current program (the
variable types for loc.a and i must be clear from their use in the program):

AUTO loc.a, $Sans, 1

« Declare the variables i, j, and tmp[] to be AUTOmatic, real variables in the current
program (array elements tmp[0] through tmp[10] are defined):

AUTO REAL i, j, tmp[10]

« Declare the variable loc to be an AUTOmatic variable in the current program. The
variable type of loc must be determined by its use in the program. Note that since
LOC appears by itself, it is not interpreted as the type-specifying keyword.)

AUTO loc

Related Keywords
GLOBAL program instruction
LOCAL program instruction

STACK monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 75

AUTO.POWER.OFF system switch

AUTO.POWER.OFF system switch

Syntax
AUTO.POWER.OFF

Function

Control whether or not eV+ disables high power when certain motion errors occur.

Usage Considerations

This switch has effect during automatic mode but not during manual mode. It is especially
useful in reducing operator intervention during common nulling-timeout and envelope
errors.

Details

Because the HIGH POWER ON/OFF high power on/off button cannot be used by itself to
enable high power as in earlier versions of eV+, Omron Adept has sought to reduce the
number of instances that high power is disabled during normal program execution. Making
this improvement allows programs to continue to recover automatically from errors without
manual intervention, that is, without requiring you to press the HIGH POWER ON/OFF
button. This system switch cancels the effect of this change. By default this switch is
disabled. Enabling it restores functionality as it was in eV+ version 11.x and earlier.

Omron Adept reviewed all automatic-mode errors that disabled high power in eV+ version
12.0 and determined which can be changed simply to decelerate the robot and generate an
error without compromising the safe operation of the system. Examples of particular
importance are errors such as nulling-timeout and envelope errors that often occur during
the normal operation of the system. In some cases, Omron Adept has modified internal
software to ensure the continued safe operation of your system.

The setting of this switch has no effect during manual mode.

If this switch is enabled, eV+ disables high power for all motion related errors including
nulling-timeout and soft envelope errors.

Example

The following program segment instructs eV+ to disable high power when any motion error
occurs:

ENABLE AUTO.POWER.OFF ;Disable high power when any
;motion error occurs
Related Keywords

DISABLE monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 76

AUTO.POWER.OFF system switch

DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 77

BAND operator

BAND operator

Syntax

...value BAND value...

Function

Perform the binary AND operation on two values.

Usage Considerations

The BAND operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details

The BAND operator can be used to perform a binary AND operation on two values on a bit-by-
bit basis, resulting in a real value.

Specifically, the BAND operation consists of the following steps:
1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.
2. Perform a binary AND operation (see below).
3. Convert the result back to a real value.

During the binary AND operation,

c = a BAND b

the bits in the resultant C are determined by comparing the corresponding bits in the
operands A and B as indicated in the following table.

For each bit in:
a b c
0 0 -> 0
0 1 -> 0
1 0 -> 0
1 1 -> 1

That is, a bit in the result will be 1 if the corresponding bit in both of the operandsis 1.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 78

BAND operator

To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Examples

Consider the following (binary values are shown to make the operation more evident):
~B101000 BAND ~B100001 yields ~B100000 (32)

Note that a very different result is obtained with the logical AND operation:
~B101000 AND ~B100001 yields -1 (TRUE)

In this case, ~B101000 and ~B100001 are each interpreted as logically TRUE since they are
nonzero.

Related Keywords

AND operator

BOR operator

BXOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 79

BASE program instruction

BASE program instruction

Syntax

BASE X_shift, Y_shift, Z_shift, Z_rotation

Function

Translate and rotate the World reference frame relative to the robot.

Usage Considerations
The BASE program instruction causes a BREAK in continuous-path motion.

The BASE monitor command applies to the robot selected by the eV+ monitor (with the
SELECT command). The command can be used while programs are executing. However, an
error will result if the robot is attached by any executing program.

The BASE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, use of the BASE command or
instruction will cause an error.

Parameters

X_shift Optional real-valued expression describing the X component (in the
normal World coordinate system) of the origin point for the new
coordinate system. (Zero is assumed if no value is provided.)

Y_shift Similar to X_shift, but for the Y direction.
Z_shift Similar to X_shift, but for the Z direction.

Z_rotation Similar to X_shift, but for a rotation about the Z axis.

Details

When the eV+ system is initialized, the origin of the reference frame of the robot is assumed
to be fixed in space such that the X-Y plane is at the robot mounting surface, the X axisisin
the direction defined by joint 1 equal to zero, and the Z axis coincides with the joint-1 axis.

The BASE instruction offsets and rotates the reference frame as specified above. This is
useful if the robot is moved after locations have been defined for an application.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 80

BASE program instruction

If, after robot locations have been defined by transformations relative to the robot reference
frame, the robot is moved relative to those locations-to a point translated by dX, dY, dZ and
rotated by Z rotation degrees about the Z axis—a BASE command or instruction can be used
to compensate so that motions to the previously defined locations will still be as desired.

Another convenient use for the BASE command or instruction is to realign the X and Y
coordinate axes so that SHIFT functions cause displacements in desired, nonstandard
directions.

NOTE: The BASE instruction has no effect on locations defined as precision points. The
arguments for the BASE instruction describe the displacement of the robot relative to its
normal location.

The BASE function can be used with the LISTL command to display the current BASE
setting.

Examples

BASE xbase,, -50.5, 30

Redefines the World reference frame because the robot has been shifted xbase millimeters in
the positive X direction and 50.5 millimeters in the negative Z direction, and has been rotated
30 degrees about the Z axis.

BASE 100,, -50

Redefines the World reference frame to effectively shift all locations 100 millimeters in the
negative X direction and 50 millimeters in the positive Z direction from their nominal location.
Note that the arguments for this instruction describe movement of the robot reference
frame relative to the robot, and thus have an opposite effect on locations relative to the
robot.

Related Keywords
BASE transformation function
SELECT monitor command
SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 81

BASE transformation function

BASE transformation function

Syntax
BASE

Function

Return the transformation value that represents the translation and rotation set by the last
BASE command or instruction.

Usage Considerations

The BASE function returns information for the robot selected by the task executing the
function.

The command LISTL BASE can be used to display the current base setting.

If the eV+ system is not configured to control a robot, use of the BASE function will not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Related Keywords
BASE monitor command
BASE program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 82

BCD real-valued function

BCD real-valued function

Syntax
BCD (value)

Function

Convert a real value to Binary Coded Decimal (BCD) format.

Usage Considerations

The BCD function is most useful when used in conjunction with the BITS command,
instruction, and function (see below).

Parameter

value Real-valued expression defining the value to be converted.

Details
The BCD function converts an integer value in the range 0 to 9999 into its BCD
representation. This can be used to set a BCD value on a set of external output signals.
Example
If you want to use digital signals 4 to 8 to output a BCD digit: The instruction

BITS 4,4 = BCD(digit)
converts the value of the real variable digit to BCD and impresses it on external output
signals 4-8.
Related Keyword

DCB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 83

BELOW program instruction

BELOW program instruction

Syntax
BELOW

Function

Request a change in the robot configuration during the next motion so that the elbow is
below the line from the shoulder to the wrist.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a below configuration, this instruction is ignored by the
robot. (SCARA robots, for example, cannot be in an ABOVE/BELOW configuration.)

The BELOW instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the BELOW instruction will
cause an error.

The following figure shows the ABOVE and BELOW configurations.

Above

ABOVE/BELOW

Related Keywords
ABOVE program instruction
CONFIG real-valued function
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 84

BELT real-valued function

BELT real-valued function

Syntax

BELT (%belt_var, mode)

Function

Return information about a conveyor belt being tracked with the conveyor tracking feature.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.
The BELT system switch must be enabled before this function can be used.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. This must be done each time the robot will perform a
sequence of motions relative to the belt, and must be done shortly before the first motion of
such a sequence.

WARNING: It is important to execute SETBELT each time the robot is
going to track the belt, to make sure the difference between the current
belt position (as returned by the BELT function) and the belt position of
the specified belt variable does not exceed 8,388,607 (“"H7FFFFF)
during active belt tracking. Unpredictable robot motion may result if the
difference does exceed this value while tracking the belt.

Parameters
%belt_var The name of the belt variable used to reference the conveyor belt.
As with all belt variables, the name must begin with a percent
symbol (%).
mode Control value that determines the information that will be

returned.

If the mode is omitted or its value is equal to zero, the BELT
function returns the encoder reading in encoder counts of the belt
specified by the belt variable. The value returned by this function is
limited to an absolute value of 8,388,607 and will roll over to -
8,388,608 after.

If the value is equal to -1, the BELT function returns the last
latched encoder position in encoder counts of the belt specified by
the belt variable. This value equivalent to the value returned by
DEVICE(O, enc, stt, 4) except it is not bounded to 8,388,607.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 85

BELT real-valued function

If the value of the expression is greater than zero, the encoder
velocity is returned in units of encoder counts per eV+ cycle (16
ms).

Examples

Set the point of interest on the referenced conveyor to be that corresponding to the current
reading of the belt encoder:

SETBELT %$main.belt = BELT (%main.belt)

Save the current speed of the belt associated with the belt variable %b:

belt.speed = BELT (%b, 1)

Related Keywords
BELT system switch
SETBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 86

BELT system switch

BELT system switch

Syntax
...BELT

Function

Control the function of the conveyor tracking features of the eV+ system.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.

If the eV+ system is not configured to control a robot, an attempt to enable the BELT system
switch will cause an error. (The DEVICE real-valued function and the SETDEVICE program
instruction must be used to access external encoders from a nonrobot system. For more
information, see the section External Encoder Device in the eV+ Language User's Guide.)

Details

This switch must be enabled before any of the special conveyor tracking instructions can be
executed. When BELT is disabled, the conveyor tracking software has a minimal impact on
the overall performance of the system.

When the BELT switch is enabled, error checking is initiated for the encoders associated with
any belt variables that are defined. The switch is disabled when the eV+ system is initialized.

Related Keywords
BELT real-valued function
BELT.MODE system parameter
BSTATUS real-valued function
DEFBELT program instruction
DISABLE monitor command
DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
SETBELT program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 87

BELT system switch

WINDOW program instruction
WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 88

BELT.MODE system parameter

BELT.MODE system parameter

Syntax
...BELT.MODE

Function

Set characteristics of the conveyor tracking feature of the eV+ system.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.

The current value of the BELT.MODE parameter can be determined with the PARAMETER
monitor command or real-valued function.

The value of the BELT.MODE parameter can be modified only with the PARAMETER monitor
command or program instruction.

Details

This parameter is interpreted as a bit-flag word. The initial setting of this parameter is 0. That
is, all the bits are zero. Bits can be set by assigning the value resulting from adding together
the desired bit mask values (see the example below).

The bit flags have the following interpretations:

Bit 1 (LSB) Upstream/downstream definition (mask value = 1)

When this bit is set to one, the instantaneous direction of travel of
the belt is used to define upstream and downstream for the window
testing routines (both in the internal motion planner and the
WINDOW real-valued function).

When this bit is set to zero, going from upstream to downstream
always corresponds to traveling in the direction of the positive X axis
of the nominal transformation.

Bit 2 Stopped-belt processing (mask value = 2)

When this bit is set to one, a program error will be generated during
motion planning if the destination is outside of the belt window and
the belt is stopped.

When this bit is set to zero, if the belt is stopped during motion
planning, the direction of the positive X axis of the nominal
transformation is used to define the downstream direction. The
normal window-error criteria are then applied (see below).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 89

BELT.MODE system parameter

Bit 3 Window error definition (mask value = 4)

When this bit is set to one, destination locations that are downstream
or upstream of the belt window cause motion instructions to fail
during planning.

When this bit is set to zero, upstream window violations cause
planning to wait until the location comes into the window.
Destination locations that are downstream of the belt window cause
window errors.

Bit 4 Effect of window errors (mask value = 8)

When this bit is set to one, motion instructions that fail during
planning due to a window error are ignored (skipped) and program
execution continues as usual. When this option is selected, each belt-
relative motion instruction should be followed by an explicit test for
planning errors using the BSTATUS function.

When this bit is zero, window errors during motion planning generate
a program step execution error, which either halts program execution
or triggers the REACTE routine.

Regardless of the setting of this bit, window errors that occur while
the robot is actually tracking the belt cause the program specified in
the latest WINDOW instruction to be executed. If no such program
has been specified, program execution is halted.

Example
Set the parameter to have bits 1 and 3 set to one (mask values 1 + 4):

PARAMETER BELT.MODE = 5

Related Keywords

BELT system switch

BELT real-valued function
BSTATUS real-valued function
PARAMETER monitor command
PARAMETER program instruction
PARAMETER real-valued function
WINDOW program instruction

WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 90

BITS program instruction

BITS program instruction

Syntax

BITS first_sig, num_sigs = value

Function

Set or clear a group of digital signals based on a value.

Usage Considerations

Both external digital output signals and internal software signals can be referenced. Input
signals must not be referenced. (Input signals are displayed by the monitor command IO 1.)

No more than 32 signals can be set at one time.

Any group of up to 32 signals can be set, provided that all the signals in the group are
configured for use by the system.

Parameters
first_sig Real-valued expression defining the lowest-numbered signal to be
affected.
num_sigs Optional real-valued expression specifying the number of signals to
be affected. A value of 1 is assumed if none is specified. The
maximum valid value is 32 .
value Real-valued expression defining the value to be set on the specified
signals. If the binary representation of the value has more bits than
num_sigs, only the lowest num__sigs signals will be affected.
Details

Sets or clears one or more external output signals or internal software signals based on the
value to the right of the equal sign. The effect of this instruction is to round value to an
integer, and then set or clear a number of signals based on the individual bits of the binary
representation of the integer.

All eV+ digital output instructions do not wait for a eV+ cycle, they turned on outputs
immediately. However, digital inputs are checked every 2 milliseconds by the eV+ operating
system.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 91

BITS program instruction

Examples

Set external output signals 1-8 (8 bits) to the binary representation of the current monitor
speed setting:

BITS 1,8 = SPEED(1)

If the monitor speed were currently set to 50% (0011 0010 binary), then signals 1-8 are set
as follows after this instruction:

signal 1 -> 0 (off) signal 5 -> 1 (on)
signal 2 -> 1 (on) signal 6 -> 1 (on)
signal 3 -> 0 (off) signal 7 -> 0 (off)
signal 4 -> 0 (off) signal 8 -> 0 (off)
Set external output signals 5-9 (4 bits) to the binary representation of the BCD digit 7:

BITS 5,4 = BCD(7)

Set external output signals 1-8 (8 bits) to the binary representation of the constant 255,
whichis 11111111 (binary). Thus, signals 1-8 will all be turned on:

BITS 1,8 = 255

Related Keywords
BITS real-valued function

I0 monitor command
RESET monitor command
SIG real-valued function
SIG.INS real-valued function
SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 92

BITS real-valued function

BITS real-valued function

Syntax

BITS (first_sig, num_sigs)

Function

Read multiple digital signals and return the value corresponding to the binary bit pattern
present on the signals.

Usage Considerations
External digital input or output signals, or internal software signals can be referenced.
A maximum of 32 signals can be read at one time.

Any group of up to 32 signals can be read, provided that all the signals in the group are
configured for use by the system.

Parameters
first_sig Real-valued expression defining the lowest-numbered signal to be
read.
num_sigs Optional real-valued expression specifying the number of signals to
be affected. A value of 1 is assumed if none is specified. The
maximum valid value is 32 .
Details

This function returns a value that corresponds to the binary bit pattern present on 1 to 32
digital signals.

The binary representation of the value returned by the function has its least-significant bit
determined by signal numbered first_sig, and its higher-order bits determined by the next
num_sigs -1 signals.

Example

Assume that the following input signal states are present:

Signal: 1008 1007 1006 1005 1004 1003 1002 1001
State: 1 1 0 1 0 1 1 0

The program step:

x = BITS (1003, 4)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 93

BITS real-valued function

will yield a value of 5 for x since the four signals starting at 1003 (that is, signals 1003
through 1006) can be interpreted as a binary representation of that value.

Related Keywords
BITS monitor command
BITS program instruction

I0 monitor command
RESET monitor command
SIG real-valued function
SIG.INS real-valued function
SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 94

BMASK real-valued function

BMASK real-valued function

Syntax
BMASK (bit, bit, ..., bit)

Function

Create a bit mask by setting individual bits.

Parameter

bit Integer value from 1 to 32 specifying a bit to turn on. The least-
significant bit is number 1.

Details

This instruction creates a bit mask by turning on (bit = 1) the specified bits and leaving all
other bits off (bit = 0).

Bit 32 is the sign bit and yields a negative number when set.

Examples
Create the bit mask ~B10001:
bm = BMASK (1, 5)
Attach to a disk LUN with mode bit 2 turned on:

mode = BMASK (2)
ATTACH (lun, mode) "DISK"

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 95

BOR operator

BOR operator

Syntax

... value BOR value ...

Function

Perform the binary OR operation on two values.

Usage Considerations

The BOR operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details

The BOR operator can be used to perform a binary OR operation on two values on a bit-by-bit
basis, resulting in a real value.

Specifically, the BOR operation consists of the following steps:

1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.

2. Perform a binary OR operation (see below).
3. Convert the result back to a real value.

During the binary OR operation,

c = a BOR b

the bits in the resultant C statement are determined by comparing the corresponding bits in
the operands A and B, as indicated in the following table.

For each bit in:
a b c
0 0 -> 0
0 1 -> 1
1 0 -> 1
1 1 -> 1

That is, a bit in the result will be 1 if the corresponding bit in either of the operandsis 1.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 96

BOR operator

To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.
Examples
Consider the following (binary values are shown only to make the operation more evident):
~B101000 BOR ~B100001 yields ~B101001 (41)
Note that a very different result is obtained with the logical OR operation:
~B101000 OR ~B100001 yields -1 (TRUE)
In this case, ~B101000 and ~B100001 are each interpreted as logically TRUE since they are
nonzero.
Related Keywords
BAND operator

BXOR operator

OR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 97

BRAKE program instruction

BRAKE program instruction

Syntax
BRAKE

Function

Abort the current robot motion.

Usage Considerations

The BRAKE instruction can be executed by any program task, including a task that is not
actively controlling the robot.

This instruction does not cause a BREAK to occur (see Details below).

If more than one robot is connected to the controller, this instruction applies to the robot
currently selected (see the SELECT instruction).

If the eV+ system is not configured to control a robot, the BRAKE instruction will not
generate an error due to the absence of a robot.
Details

BRAKE causes the current robot motion to be aborted immediately. In response to this
instruction, the robot will decelerate to a stop and then (without waiting for position errors to
null) begin the next motion.

NOTE: Program execution is not suspended until the robot motion stops.

Example

The following program segment initiates a robot motion and simultaneously tests for a
condition to be met. If the condition is met, the motion is stopped with a BRAKE instruction.
Otherwise, the motion is completed normally.

MOVES step[1l] ;Initiate motion to next location
DO ;Loop continuously...
IF SIG(1023) THEN ;If input signal 1023 becomes set,
BRAKE ;stop the motion immediately
EXIT ;and continue elsewhere
END
UNTIL STATE (2) == 2 ;...until location reached
MOVES stepl[2] ;Move to next location

Related Keyword

BREAK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 98

BREAK program instruction

BREAK program instruction

Syntax
BREAK

Function

Suspend program execution until the current motion completes.

Usage Considerations

The BREAK instruction is only used to wait for motion by the robot attached to the current
task.

If the eV+ system is not configured to control a robot, executing the BREAK instruction will
cause an error.

Details
This instruction has two effects:
1. Program execution is suspended until the robot reaches its current destination.

NOTE: BREAK cannot be used to have one task wait until a motion is completed by
another task.

2. The continuous-path transition between the current motion and that commanded by
the next motion instruction is broken. That is, the two motions are prevented from
being merged into a single continuous path.

The BREAK instruction causes continuous-path processing to terminate by blocking eV+
program execution until the motion ends. CPOFF causes the trajectory generator to
terminate continuous path without affecting the forward processing of the eV+ program.

Related Keywords
BRAKE program instruction
CP system switch

SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 99

BSTATUS real-valued function

BSTATUS real-valued function

Syntax
BSTATUS

Function

Return information about the status of the conveyor tracking system.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.

The BSTATUS function returns information for the robot selected by the task executing the
function.

The word "bstatus" cannot be used as a program name or variable name.

Details
This function is normally used when BELT.MODE bit 4 is set.

This function returns a value that is equivalent to the binary value represented by a set of bit
flags, which indicate the following conditions of the conveyor tracking software:

Bit 1 (LSB) Tracking belt (mask value = 1)
When this bit is set, the robot is currently tracking a belt.

Bit 2 Destination upstream (mask value = 2)
When this bit is set, the destination location was found to be
upstream of the belt window during the planning of the last motion.

Bit 3 Destination downstream (mask value = 4)
When this bit is set, the destination location was found to be
downstream of the belt window during the planning of the last
motion.

Bit 4 Window violation (mask value = 8)
When this bit is set, a window violation occurred while the robot was
tracking a belt during the last belt-relative motion. (This flag is
cleared at the start of each belt-relative motion.)

Related Keywords
BELT real-valued function

BELT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 100

BSTATUS real-valued function

BELT.MODE system parameter
DEFBELT program instruction
SELECT program instruction
SELECT real-valued function
WINDOW program instruction
WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 101

BXOR operator

BXOR operator

Syntax

... value BXOR value ...

Function

Perform the binary exclusive-OR operation on two values.

Usage Considerations

The BXOR operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details
The BXOR operator can be used to perform a binary exclusive-OR operation on two values on
a bit-by-bit basis, resulting in a real value.

NOTE: This operation is meaningful only when performed on integer values.

Specifically, the BXOR operation consists of the following steps:
1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.
2. Perform a binary exclusive-OR operation (see below).
3. Convert the result back to a real value.
During the binary exclusive-OR operation,
c = a BXOR b

the bits in the resultant C are determined by comparing the corresponding bits in the
operands A and B, as indicated in the following table.

For each bit in:
a b c
0 0 -> 0
0 1 -> 1
1 0 -> 1

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 102

BXOR operator

For each bit in:

a b C

That is, a bit in the result is 1 if the corresponding bit in one (and only one) of the operands is
1. To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.
Examples
Consider the following (binary values are shown only to make the operation more evident):
~B101000 BXOR ~B100001 yields ~B001001 (9)
Note that a very different result is obtained with the logical XOR operation:
~B101000 XOR ~B100001 yields 0 (FALSE)
In this case, 7B101000 and ~B100001 are each interpreted as logically TRUE since they are
nonzero.
Related Keywords
BAND operator
BOR operator
XOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 103

BY keyword

BY keyword

Syntax
SCALE(transformation BY value)

SHIFT(transformation BY value, value, value)

Function

Complete the syntax of the SCALE and SHIFT functions.

Examples

SET new.trans = SCALE (old.trans BY scale.factor)
SET new.trans = SHIFT (old.trans BY x,vy,z)

Related Keywords
SCALE transformation function

SHIFT transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 104

CALIBRATE program instruction

CALIBRATE program instruction

Syntax

CALIBRATE mode, status

Function

Initialize the robot positioning system with the robot's current position.

Usage Considerations
Normally, the instruction is issued with mode equal to zero.
The instruction has no effect if the DRY.RUN system switch is enabled.

If the robot is to be moved under program control, the CALIBRATE instruction (or command)
must be processed every time system power is turned on and the eV+ system is booted.

The robot cannot be moved under program control or with the pendant until a CALIBRATE
instruction (or CALIBRATE monitor command) has been processed.

NOTE: Some robots can be moved in joint mode with the control pendant even when
they have not been calibrated.

If multiple robots are connected to the system controller, this instruction attempts to
calibrate all robots unless they are disabled with the ROBOT switch. All of the enabled robots
must be calibrated before any of them can be moved under program control.

The CALIBRATE instruction may operate differently for each type of robot. For robots with
non-absolute (e.g., incremental) encoders, this instruction causes the robot to move. In this
case, the robot must be far enough from the limits of the working range that it will not move
out of range during the calibration process. (See the description of the CALIBRATE monitor
command for details of the robot motion.)

If the eV+ system is not configured to control a robot, executing the CALIBRATE instruction
causes an error.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 105

CALIBRATE program instruction

Parameters
mode A real expression that indicates what part of calibration is to be
performed:
LGS Interpretation
mode
0 Perform a normal calibration of all the robots

(or omitted) | controlled by the system.
In detail, the following operations are performed:

(a) Load the main calibration program if it is not
already in memory.

(b) Execute the main calibration program with the
load, execute, and delete flags set. That causes the
robot-specific calibration routines to be loaded, the
robots to be calibrated, and the robot routines to be
deleted. (Note that the main calibration program is
left in memory.)

1 Load the main calibration program if it is not already
in memory, and execute the main calibration
program with the load flag set. That causes the
calibration program to load the applicable robot-
specific calibration routines. Note, however, that the
calibration process is not performed.

2 Execute the main calibration program (which must
already be in memory) with the execute flag set. That
causes the system robot(s) to be calibrated, and all
the calibration programs to be left in memory.

3 Execute the main calibration program (which must
already be in memory) with the delete flag set. That
causes the calibration program to delete the robot-
specific calibration routines from memory. Note,
however, that the actual calibration process is not
performed, and the main calibration program is left in
memory.

status Real-valued variable that receives the exit status returned by the
calibration program, or (in mode -1) from eV+ when trying to enter into

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 106

CALIBRATE program instruction

the special "calibrate" mode.

Details

When started, eV+ assumes that the robot is not calibrated and restricts your ability to move
the robot with the pendant or an application program.

NOTE: The COMP mode light on the pendant does not come on when the robot is not
calibrated.

Robots with incremental encoders lose start-up calibration whenever system power is
switched off. As a safety measure, these robots also lose start-up calibration whenever an
Encoder quadrature error occurs for one of the robot joints. Other servo errors that can
cause the robot to lose calibration are *Unexpected zero index*, *No zero index*, and *RSC
Communications Failure*.

« Forthe Cobra 600 and 800 robots, this instruction causes a small motion of joint 4
(theta).

If this program instruction attempts to load the main calibration program, the same
program, module, and file name, and search algorithm, are employed as for the CALIBRATE
monitor command.

If you wish to carry out a CALIBRATE instruction in task 0, one way to do so is from a
program run using the /C qualifier on the EXECUTE instruction. With that qualifier specified,
a program to calibrate the robot can run in task 0 even when DRY.RUN is disabled. A program
runningin any task other than 0 can execute the CALIBRATE instruction without special
conditions.

The CALIBRATE instruction shall only be executed from one task at a time. If it might be
called from multiple tasks (from a REACTE program for example) the call needs to be
protected by a mutex using the TAS fonction (see example below).

Example

The following instruction sequence can be used by any program task to perform start-up
calibration on the robot (if task #0 is used, the DRY.RUN switch must be enabled before the
program is executed):

DETACH () ;Detach the robot

DISABLE DRY.RUN ;Ensure DRY.RUN is disabled
ENABLE POWER ;Ensure High Ppower is enabled
CALIBRATE ;Calibrate the robot

ATTACH () ;Reattach the robot

The following instruction sequence must be used if CALIBRATE is called from more than one
task:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 107

CALIBRATE program instruction

GLOBAL en po_ lock ;Needs to be initialized to FALSE in another
routine
WHILE TAS (en_po_lock, TRUE) DO ;Get Lock
WAIT
END
ENABLE POWER ;Ensure High Power is enabled
CALIBRATE ;Calibrate the robot
ATTACH () ;Reattach the robot
en_po_lock = FALSE ;Release lock

Related Keywords

CALIBRATE monitor command
NOT.CALIBRATED system parameter
SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 108

CALL program instruction

CALL program instruction

Syntax

CALL program(arg_list)

Function

Suspend execution of the current program and continue execution with a new program
(thatis, a subroutine).

Parameters

program Name of the new program to be executed.

arg_list Optional list of subroutine arguments (separated by commas) to be
passed between the current program and the new program. (If no
argument list is specified, the parentheses after the program
parameter can be omitted.)

Arguments can be used to pass data to the called program, to receive
results back, or a combination of both. (How arguments are passed is
described below.)

Each argument can be any one of the data types supported by eV+
(that is, belt, precision point, real-value, string, and transformation),
and can be specified as a constant, a variable, or an expression.! The
type of each argument must match the type of its counterpart in the
argument list of the called program. An argument specified as a variable
can be a simple variable, an array element, or an array with one or
more of its indexes left blank. (See below for more information.)

NOTE: If a value is being passed back to the calling program, the
parameter must be specified as a variable.

Any argument can be omitted, with the result that the corresponding
argument in the called program will be undefined. If an argument is
omitted within the argument list, the separating comma must still be
included. If an argument is omitted at the end of the list, the comma
preceding the argument can also be omitted. (See the description of
.PROGRAM for more information on the effect of omitting an
argument.)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 109

CALL program instruction

Details

The CALL instruction causes execution of the current program to be suspended temporarily.
Execution continues at the first step of the indicated new program, which is then considered
a subroutine.

Execution automatically returns to the current program when a RETURN instruction is
executed in the subroutine. Execution continues with the instruction immediately following
the CALL instruction.

Subroutine arguments can be passed by value or by reference. When an argument is passed
by value, a copy of the argument value is passed to the subroutine. Any changes to the
corresponding subroutine argument in the subroutine will not be passed back to the calling
routine. Any argument that is specified as an expression (or compound transformation) will
be passed by value.

When an argument is a (scalar or array) variable, it is passed by reference. That means a
pointer to the variable is passed to the subroutine, which then works with exactly the same
variable as the calling routine. If the called routine changes the value of the variable, the
value is also changed for the calling routine. This can be especially significant, for example, if
the same variable is passed as two arguments of a subroutine call. Then, any change to either
of the corresponding subroutine arguments in the subroutine automatically changes the
other corresponding subroutine argument.

Note that an argument that is passed by reference (because it is a variable) can generally be
forced to passage by value. The way that is done depends on the type of the variable, as
follows:

» For a real variable, passage by value can be forced by enclosing the variable in
parentheses:
CALL prog_a((count))
« Forastring variable, an empty string ("") can be added to the variable:

CALL prog b(Sstr.var+"")

« For atransformation variable (for example, start), an equivalent transformation value
can be specified by a compound transformation consisting of the variable and the NULL
transformation:

CALL prog_c(start:NULL)

As stated above, the items in the arg_list must match their corresponding items in the called
program. In addition to straightforward matches of scalar to scalar, and arrays of equal
numbers of dimensions, there are several situations in which higher dimension arrays can be
passed in place of lower dimension arrays. For example, all the following cases are valid:

« Array element passed to a scalar:

CALL example(al[l]) -——=> .PROGRAM example (b)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 110

CALL program instruction

CALL example(all,2]) -—=> .PROGRAM example (b)
CALL example(al[l,2,3]) ———> .PROGRAM example (b)

« Onedimension of an array passed to a one-dimensional array:

CALL example(all]) -———> .PROGRAM example (b[])
CALL example(all,]1) ———> .PROGRAM example (b[])
CALL example(al[l,2,]) —-———> .PROGRAM example(b[])

« Two dimensions of an array passed to a two-dimensional array:

CALL example(al,]) -——=> .PROGRAM example (b[,])
CALL example(all,,]) -——> .PROGRAM example (b[,])

« Three dimensions of an array passed to a three-dimensional array:

CALL example(al,,]) -——=> .PROGRAM example(b[,,])

Examples
CALL pallet (count)

Branches to the program named pallet, passing to it a pointer to the variable count. When a
RETURN instruction is executed, control returns to the program containing the CALL
instruction and count will contain the current value of the corresponding subroutine
argument.

CALL cycle(l, , n+3)

Branches to the program named cycle. The value 1 is passed to the first parameter of cycle,
its second parameter is undefined, and its third parameter receives the value of the
expression n+3. (If cycle has more than three parameters, the remaining parameters are all
undefined.)

Because none of the arguments in the CALL are variables, no data will be returned by the
program cycle.

Related Keywords
CALLP program instruction
CALLS program instruction
.PROGRAM program instruction
RETURN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 111

CALLP program instruction

CALLP program instruction

Syntax

CALLP var (arg_list)

Function

Call a program given a pointer to the program in memory.

Usage Considerations

Using SYMBOL.PTR and CALLP is an alternative to using CALLS to invoke a eV+ subroutine
given its name as string data. For some applications, the SYMBOL.PTR-CALLP combination is
much faster than CALLS.

Parameters
var A real variable (not an expression) that contains a pointer to a program
symbol.

arg_list A list of arguments to be passed between the current program and the
new program.

Details

In situations where the same program is called multiple times, the CALLP instruction can be
significantly more efficient than the CALLS instruction. This is especially true in systems that
have many programs loaded. (In situations where a program is called only once, the CALLS

instruction is faster.)

When a CALLS instruction is used, the following steps are performed each time the CALLS
instruction is encountered:

1. The user string is evaluated.
2. The eV+ program symbol with that name is found in the eV+ symbol table.
3. The proper eV+ program is called.

As an alternative, the SYMBOL.PTR function can be used to perform the first two steps.
Typically, that is done one time, during the initialization portion of the application software.
Then, in place of the CALLS instruction, a CALLP instruction can be used to perform the third
step above. (The CALLP instruction is just slightly slower than a CALL instruction.)

In situations where the same program is called multiple times, avoiding the first two steps of
CALLS can be significant, especially in systems that have many programs loaded.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 112

CALLP program instruction

The CALLP instruction calls the program pointed to by the real variable var. This variable
should have been obtained by using the SYMBOL.PTR function. If the value of var is zero, no
program is called, and no error is reported. If var does not contain a valid pointer, program
execution stops with error -406 (*Undefined program or variable name*).

Example

Instructions such as the following are executed in the initialization section of the application
program:

my.pgm.ptr[1] = SYMBOL.PTR("my.program.1l")
my.pgm.ptr[2] = SYMBOL.PTR("my.program.2")

Then, in the repetitive section of the application program, the following is executed:

CALLP my.pgm.ptr[index] (parml, parm2)

Related Keywords

CALL program instruction

CALLS program instruction
$SYMBOL string function
SYMBOL.PTR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 113

CALLS program instruction

CALLS program instruction

Syntax
CALLS string(arg_list)

Function

Suspend execution of the current program and continue execution with a new program
(that is, a subroutine) specified with a string value.

Usage Considerations

CALLS takes much longer to execute than the normal CALL instruction. Thus, CALLS should
be used only when necessary.

Parameters

string String value, variable, or expression defining the (1-to 15-character)
name of the new program to be executed. (The letters in the name can
be lowercase or uppercase.)

arg_list Optional list of arguments to be passed between the current program
and the new program. The parentheses can be omitted if no argument
list is specified. (See the CALL instruction for further information on
subroutine arguments.)

NOTE: Since the argument list is not specified as part of the string parameter, all the
subroutines called by a specific CALLS instruction must have equivalent argument lists.

Details

The CALLS instruction behaves exactly as the CALL instruction does. The only difference
between the two instructions is the way the subroutine name is specified. CALL requires that
the name be explicitly entered in the instruction step. CALLS permits the name to be
specified by a string variable or expression, which can have its value defined when the
program is executed. That allows the program to call different subroutines depending on the
circumstances.

As with the CALL instruction, execution automatically returns to the current program when
a RETURN instruction is executed in the subroutine. Execution continues with the
instruction immediately following the CALLS instruction.

For some applications, the CALLP instruction is much more efficient than CALLS. See the
CALLP instruction for details.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 114

CALLS program instruction

Examples

The program segment below demonstrates how the CALLS instruction can be used to branch
to a subroutine whose name is determined when the program is executed.

First the program reads a set of four digital input lines (1001 to 1004) to determine which of
sixteen different part types it is dealing with. The part type is considered to be a hexadecimal
number, which is converted to the corresponding ASCII character. Once the character is
defined, the appropriate subroutine (that is, part.0, part.1, ..., part.f) is called to process the
part. (The part-type value is also used to select the portion of the two-dimensional array
argument that is passed to the subroutine.)

type = BITS (1001, 4) ;Get part type from digital input
Stype = S$ENCODE (/HO, type) ;Convert to ASCII

character

CALLS "part."+S$type (arguments[type,], status)

This example can be made more robust by using the STATUS real-valued function to make
sure the proposed subroutine exists before it is called. Using this function avoids possible
errors from undefined program names.

Related Keywords

CALL program instruction
CALLP program instruction
.PROGRAM program instruction
RETURN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 115

CAS real-valued function

CAS real-valued function

Syntax

CAS (variable, test_value, new_value)

Function

This function compares a real variable to a test value, and conditionally sets a new value as
one indivisible operation.

Usage Considerations

The eV+ system does not enforce any protection scheme for global variables that are shared
by multiple program tasks. It is the programmer's responsibility to keep track of the usage of
such global variables. The CAS real-valued function (or the similar TAS function) can be used
to implement logical interlocks on access to shared variables.

This function can also be used to work around a restriction on the simultaneous access of
global arrays by multiple program tasks — program execution can fail if two or more tasks
attempt to increase the size of an array at the same time. For a detailed description of this,
see the "Global Array Access Restriction" section of the information about Arrays in the eV+
Language User's Guide.

Parameters

variable Name of the real-valued variable to be tested and assigned the new
value given.

test_value Real value, variable, or expression that defines the comparison
value.

new_value Realvalue, variable, or expression that defines the new value to be
assigned to the specified variable.

Details

If the variable is equal to the test value, the new value is stored in the variable. Otherwise
the variable is not modified. The original value of the variable is returned as the function
value.

The compare and set-new-value operations occur with interrupts locked so that the
operation is indivisible. This function provides a way for setting semaphores between tasks,
similar to the TAS real-valued function. See the description of that function for more
information — use of the CAS function is similar.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 116

CAS real-valued function

If the variable is undefined when the function is executed, it is treated as having the value
zero.

Related Keywords

TAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 117

CASE program instruction

CASE program instruction

Syntax
CASE value OF

Function

Initiate processing of a CASE structure by defining the value of interest.

Usage Considerations

This instruction must be part of a complete CASE structure.

Parameter

value Real value, variable, or expression that defines the value to be matched
in the CASE structure to determine which instructions are executed.

Details

This is perhaps the most powerful structure available with eV+. It provides a means for
executing one group of instructions from among any number of groups. The complete
syntax is as follows (the blank lines are not required):

CASE value OF
VALUE value 1,...:
group of steps
VALUE value 2,...:
group_of steps

ANY
group of steps
END

The three vertical dots indicate that any number of VALUE steps can be used to set off
additional groups of instructions.

The ANY step and the group of steps following it are optional. There can be only one ANY step
in a CASE structure, and it must mark the last group in the structure (as shown above).

Note that the ANY and END steps must be on lines by themselves as shown. (However, as
with all instructions, those lines can have comments.)

The CASE structure is processed as follows:

The expression following the CASE keyword is evaluated.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 118

CASE program instruction

All the VALUE steps are scanned until the first one is found that has the same
value.

The group of instructions following that VALUE step is executed.

Execution continues at the first instruction after the END step.

If no VALUE step is found that contains the same value as that in the CASE instruction, and
there is an ANY step in the structure, then the group of instructions following the ANY step
will be executed.

If no VALUE match is found in the structure, and there is no ANY step, none of the
instructions in the entire CASE structure are executed.

Examples

The following example shows the basic function of a CASE statement:

CASE number OF
VALUE 1:
TYPE "one"
VALUE 2:
TYPE "two"
ANY
TYPE "Not one or two"
END

The following sample program asks you to enter a test value. If the value is negative, the
program exits after displaying a message. Otherwise, a CASE structure is used to classify the
input value as a member of one of three groups. The groups are (1) even integers from zero
to ten, (2) odd integers from one to nine, and (3) all other positive numbers.

PROMPT "Enter a value from 1 to 10: ", x

CASE x OF
VALUE 0, 2, 4, 6, 8, 10:
TYPE "The number", x, " is EVEN"

VALUE 1, 3, 5, 7, 9:
TYPE "The number", x, " is ODD"
ANY
TYPE x, " is not an integer from 0 to 10"
END

The following example shows a special use of the CASE structure to test Boolean conditions:

PROMPT "Enter a number", x
CASE TRUE OF
VALUE (x > 0):
TYPE "The number was greater than 0."
VALUE (x ==) .
TYPE "The number was equal to 0."
VALUE (x < 0):
TYPE "The number was less than 0."

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 119

CASE program instruction

END

Related Keywords
ANY program instruction
END program instruction

VALUE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 120

$CHR string function

$CHR string function

Syntax
$CHR (value)

Function

Return a one-character string corresponding to a given ASCII value.
Parameter
value Real-valued expression defining the value to be translated into a

character. The value must be in the range of 0 to 255 (decimal).

If the valueisin the range 0 to 127 (decimal), the corresponding ASCII
character will be returned.

Example

SCHR (65) ;Returns the character A, since its ASCII value is
65.

Related Keywords
ASC real-valued function
$DBLB string function
$FLTB string function
$INTB string function
$LNGB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 121

CLEAR.EVENT program instruction

CLEAR.EVENT program instruction

Syntax
CLEAR.EVENT task, flag

Function

Clear an event associated with the specified task.

Parameters

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be cleared. The valid
rangeis 0 to 6 or 0 to 27, inclusive. If this parameter is omitted, the
number of the current task is used.

NOTE: The basic system allows 7 tasks (0 - 6). The eV+ Extensions
option allows 28 tasks (0 - 27).

flag Not used, defaultsto 1.

Details

This instruction clears the event associated with the specified task.

The default event cleared is the input/output completion event for which the instruction
WAIT.EVENT 1 waits. This event is also cleared by the execution (not the completion) of an
input/output instruction.

Related Keywords

GET.EVENT real-valued function

SET.EVENT program instruction

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 122

CLEAR.LATCHES program instruction

CLEAR.LATCHES program instruction

Syntax
CLEAR.LATCHES (select)

Function

Empties the latch buffer for the selected device.

Parameter

select Integer, expression, or real variable that determines whether any
latches have occurred since the last time the function was executed:

0 Clears latch buffer for currently selected robot
-n (< 0) Clears latch buffer for belt n
+n (> 0) Clears latch buffer for robot n

Details

This instruction clears the event and all information associated with the specified latch
buffer.

As opposed to the LATCHED real-valued function, no latch event data will be made available
for retrieval.

Related Keywords

DEVICE real-valued function

LATCHED real-valued function

LATCH transformation function

#PLATCH precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 123

CLOSE and CLOSEI program instruction

CLOSE and CLOSEI program instruction

Syntax
CLOSE
CLOSEI

Function

Close the robot gripper.

Usage Considerations
CLOSE causes the hand to close during the next robot motion.

CLOSEI causes a BREAK in the current continuous-path motion and causes the hand to close
immediately after the current motion completes.

The CLOSE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The CLOSEI instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details

These instructions send a signal to the control valves for the pneumatic hand to close. If the
CLOSE instruction is used, the signal is not sent until the next robot motion begins.

The CLOSEI instruction differs from CLOSE in the following ways:
« ABREAK occurs if a continuous-path robot motion is in progress.

« Thesignalis sent to the control valves at the conclusion of the current motion, or
immediately if no motion is in progress.

« Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

Examples

During the next robot motion, cause the pneumatic control valves to assume the closed
state:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 125

CLOSE and CLOSEI program instruction

CLOSE

Cause the pneumatic control valves to assume the closed state as soon as the current motion
stops:

CLOSEI

Related Keywords
HAND.TIME system parameter
OPEN program instruction
OPENI program instruction
RELAX program instruction
RELAXI program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 126

COARSE program instruction

COARSE program instruction

Syntax
COARSE tolerance ALWAYS

Function

Enable a low-precision feature of the robot hardware servo.

Usage Considerations
Only the next robot motion will be affected unless the ALWAYS parameter is specified.

If the tolerance parameter is specified, its value becomes the default for any subsequent
COARSE instruction executed during the current execution cycle (regardless of whether
ALWAYS is specified).

FINE 100 ALWAYS is assumed whenever program execution is initiated and when a new
execution cycle begins.

The COARSE instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the COARSE instruction
causes an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the percentage
of the standard coarse tolerances that are to be used for each joint of
the robot attached by the current execution task. See the Details
section for default values.

ALWAYS Optional qualifier that establishes COARSE as the default condition.
That is, COARSE will remain in effect until disabled by a FINE
instruction. If ALWAYS is not specified, the COARSE instruction will
apply only to the next robot motion.

Details

This instruction enables a low-precision feature in the robot motion servo so that larger
errors in the final positions of the robot joints are permitted at the ends of motions. This
allows faster motion execution when high accuracy is not required.

Lower precision is sometimes required in belt tracking applications when the constant
motion of the robot prevents the servos from settling to high precision.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 127

COARSE program instruction

If the tolerance parameter is specified, the new setting takes effect at the start of the next
motion. Also, the value becomes the default for any subsequent COARSE instruction
executed during the current execution cycle (regardless of whether ALWAYS is specified).
Changing the COARSE tolerance does not affect the FINE tolerance.

If the tolerance parameter is omitted, the most recent setting (for the attached robot) is
used. The default setting is restored to 100 percent when program execution begins, or a
new execution cycle starts (assuming that the robot is attached to the program).

Examples

Enable the low-precision feature only for the next motion:

COARSE

Enable the low-precision feature for the next motion, with the tolerance settings changed to
150% of the standard tolerance for each joint (that is, a looser tolerance):

COARSE 150

Enable the low-precision feature until it is explicitly disabled:

COARSE ALWAYS

Related Keywords

CONFIG real-valued function
DELAY.IN.TOL program instruction
FINE program instruction

NONULL program instruction
NULL program instruction

SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 128

COM operator

COM operator

Syntax

... COM value ...

Function

Perform the binary complement operation on a value.

Usage Considerations
The word "com" cannot be used as a program name or variable name.
The COM operation is meaningful only when performed on an integer value. Only the integer

parts of real values are used. Any fractional parts are ignored.

Parameter

value Real-valued expression defining the value to be complemented.

Details

The COM operator performs the binary complement operation on a bit-by-bit basis, resulting
in a real value.

Specifically, the COM operation consists of the following steps:
1. Convert the operand to a sign-extended 32-bit integer, truncating any fractional part.
2. Perform a binary complement operation.
3. Convert the result back to a real value.
To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.
Examples
For example:

COM 40 yields -41

Note that a very different result is obtained with the logical complement operation (NOT):

NOT 40 yields 0.0 (FALSE)

In this case, 40 is interpreted as logically TRUE since it is nonzero.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 129

CONFIG real-valued function

CONFIG real-valued function

Syntax
CONFIG (select)

Function

Return a value that provides information about the robot's geometric configuration, or the
status of the motion servo-control features.

Usage Considerations

The CONFIG function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the CONFIG function causes an
error.

Parameter

select Optional real value, variable, or expression (interpreted as an integer)
that has a value from 0 to 13 and selects the category of the
configuration information to be returned. (See below for details.)

Details

This function returns a value that is interpreted as a series of bit flags. The interpretation of
the value returned by this function depends on the select parameter.

When the select parameter is omitted, or has the value 0, 1, or 2, the CONFIG function
returns a value that can be interpreted as bit flags indicating a geometric configuration of the
robot. That is, each bit in the value represents one characteristic of a robot configuration.

The parameter values in this group determine which robot configuration is returned by the
function:

Select Configuration information returned
0 The robot's current (instantaneous) configuration. (The default value is
0.)
1 The configuration the robot will achieve at the completion of the current
motion, or the current configuration if no motion is in progress (and the
robot is attached).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 130

CONFIG real-valued function

Select Configuration information returned

NOTE: The result returned is not meaningful if the robot is not

attached.
2 The configuration the robot achieves at the completion of the next
motion (assuming that it is a joint-interpolated [not straight-line]
motion).

The interpretations of the bit flags returned by these selections are as follows:

Bit# | Bt | Indication if bit SET
Mask

1 1 Robot has righty
configuration

2 2 Robot has below
configuration

3 4 Robot has flipped
configuration

When the select parameter is 3, 4, or 5, the CONFIG function returns a value that can be
interpreted as bit flags indicating the settings of several robot motion servo-control features.
That is, each bit in the value represents the state of one motion servo-control feature.

The different parameter values in this group select which motion(s) will be affected by the
features settings reported by the function, as follows:

Select Configuration information returned

3 The permanent settings of the robot motion servo-control features. That
is, the settings defined by instructions that specify the ALWAYS qualifier.

4 The temporary settings for the motion currently executing, or the last
motion completed if no motion is in progress.

5 The temporary settings that will apply to the next motion performed.

The interpretations of the bit flags returned by selections 3, 4, and 5 are as follows:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 131

CONFIG real-valued function

Bi- Bit Indicatio-
t# Mas- n if bit Bit SET
k CLEAR
1 1 (None) (None)
2 2 FINE COARSE
asserted asserted
3 4 NULL NONULL
asserted asserted
4 8 MULTIPLE SINGLE
asserted asserted
5 AH1- | CPON CPOFF
0 asserted asserted
6 AH2- | OVERLAP NOOVERLA-
0 asserted P asserted

When the select parameteris 6, 7, or 8, the CONFIG function returns a value that
represents the setting of the FINE tolerance.

Select FINE tolerance returned
6 The permanent setting, as a
percentage of the standard
tolerance.
7 The setting used for the

previous or current motion,
as a percentage of the
standard tolerance.

8 The setting to be used for the
next motion, as a percentage
of the standard tolerance.

When the select parameteris 9, 10, or 11, the CONFIG function returns a value that
represents the setting of the COARSE tolerance.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 132

CONFIG real-valued function

COARSE tolerance

X e returned

9 The permanent setting, as a
percentage of the standard
tolerance.

10 The setting used for the
previous or current motion, as
a percentage of the standard
tolerance.

11 The setting to be used for the
next motion, as a percentage
of the standard tolerance.

When the select parameteris 12, the available joint configuration options for the selected
robot are returned as shown below.

Indication if

Bit # Bit Mask bit set

1 1 Robot can have
lefty or righty
configuration.

2 2 Robot can have
above or below
configuration.

3 4 Robot can have
flipped or noflip
configuration.

18 AH20000 Robot supports
the OVERLAP
and
NOOVERLAP
instructions.

22 AH200000 | Robot's last
rotary joint can
be limited to
+180 degrees

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 133

CONFIG real-valued function

Indication if

Bit # Bit Mask bit set

(SINGLE or
MULTIPLE).

When the select parameteris 13, the type of robot motion is returned. The bit values
returned are shown below.

Bit # Bit Mask Description

1 1 This bit is set if
the motion is
joint
interpolated; it is
cleared for
straight-line
motion.

2 2 This bit is set if
the robot is
performing a
SPIN motion.

Related Keywords
ABOVE program instruction
BELOW program instruction
COARSE program instruction
CPOFF program instruction
CPON program instruction
FINE program instruction

FLIP program instruction
LEFTY program instruction
MULTIPLE program instruction
NOFLIP program instruction
NONULL program instruction
NOOVERLAP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 134

CONFIG real-valued function

NULL program instruction
OVERLAP program instruction
RIGHTY program instruction
SELECT program instruction
SELECT real-valued function
SINGLE program instruction

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 135

COS real-valued function

COS real-valued function

Syntax
COS (angle)

Function

Return the trigonometric cosine of a given angle.

Usage Considerations
The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values may cause
a loss of accuracy in the returned value.

Parameter
angle Real-valued expression that defines the angular value (in degrees) to be
considered.
Details

Returns the trigonometric cosine of the argument, which is assumed to be in degrees. The
resulting value is always in the range of -1.0 to +1.0, inclusive.

Examples
CO0S (0.5) ;Returns 0.999962
COS(-5.462) ;Returns 0.9954596
COS (60) ;Returns 0.4999999
COS(1.3125E+2) ;Returns -0.6593457

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored and manipulated as double-
precision values. The LISTR monitor command will display real values to full precision.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 136

CP system switch

CP system switch

Syntax
..CP

Function

Control the continuous-path feature.

Details

The CP switch can be used to turn off continuous-path motion processing. For more
information on continuous path motion, see the section Continuous Path Trajectories in the
eV+ Language User's Guide.

This switch is enabled when the eV+ system is initialized.

Example

DISABLE CP ;Turn off continuous-path motion processing.

Related Keywords
BREAK program instruction
CPOFF program instruction
CPON program instruction
DISABLE monitor command
DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 137

CPOFF program instruction

CPOFF program instruction

Syntax
CPOFF ALWAYS

Function

Instruct the eV+ system to stop the robot at the completion of the next motion instruction
(or all subsequent motion instructions) and null position errors.

Usage Considerations
Only the next robot motion will be affected if the ALWAYS parameter is not specified.

CPON ALWAYS is assumed whenever program execution is initiated and when a new
execution cycle begins.

The CPOFF instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies only to the robot selected
by the task.

If the eV+ system is not configured to control a robot, executing the CPOFF instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPOFF as the default condition. That
is, when ALWAYS is included in a CPOFF instruction, CPOFF will remain
in effect continuously until disabled by a CPON instruction. If ALWAYS is
not specified, the CPOFF instruction applies only to the next robot
motion.

Details

When CPOFF is in effect, the robot will be brought to a stop at the completion of the next
robot motion, and any final position errors will be nulled (if required).

Unlike the BREAK instruction, which is executed after a motion to cause continuous-path
processing to terminate, CPON and CPOFF are executed before a motion instruction to affect
the continuous-path processing of the next motion instruction. Also, while BREAK applies to
only one motion instruction, CPOFF can apply to all the motion instructions that follow.

NOTE: The BREAK instruction causes continuous-path processing to terminate by
blocking eV+ program execution until the motion ends. CPOFF causes the trajectory
generator to terminate continuous path without affecting the forward processing of the
eV+ program.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 138

CPOFF program instruction

If the CP system switch is disabled, continuous-path processing never occurs regardless of
any CPON or CPOFF instructions.

Related Keywords
BREAK program instruction
CP system switch

CPON program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 139

CPON program instruction

CPON program instruction

Syntax
CPON ALWAYS

Function

Instruct the eV+ system to execute the next motion instruction (or all subsequent motion
instructions) as part of a continuous path.

Usage Considerations
Only the next robot motion will be affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. CPON ALWAYS is assumed whenever program
execution is initiated and when a new execution cycle begins.

The CPON instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies only to the robot selected
by the task.

If the eV+ system is not configured to control a robot, executing the CPON instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPON as the default condition. That
is, if ALWAYS is specified, CPON will remain in effect continuously until
disabled by a CPOFF instruction. If ALWAYS is not specified, the CPON
instruction applies only to the next robot motion.

Details

When CPON is in effect, it is possible to execute a series of motion instructions that are
blended into a single continuous path. That is, each motion will be performed in succession
without stopping the robot at specified locations.

Unlike the BREAK instruction, which is executed after a motion to cause continuous-path
processing to terminate, CPON and CPOFF are executed before a motion instruction to affect
the continuous-path processing of the next motion instruction.

NOTE: The BREAK instruction causes continuous-path processing to terminate by
blocking eV+ program execution until the motion ends. CPOFF causes the trajectory
generator to terminate continuous path without affecting the forward processing of the
eV+ program.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 140

CPON program instruction

While asserting CPON permits continuous-path processing to occur, any of the following
conditions will break a continuous path and override CPON:

« No subsequent motion instruction is executed before completion of the next motion
instruction.

« CPsystem switch is disabled.

(If the CP system switch is disabled, continuous-path processing never occurs,
regardless of any CPON or CPOFF instructions.)

« The next motion instruction is followed by an instruction that explicitly or implicitly
causes motion termination (for example, BREAK, OPENI).

Related Keywords
BREAK program instruction
CP system switch

CPOFF program instruction
SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 141

CYCLE.END program instruction

CYCLE.END program instruction

Syntax

CYCLE.END task_num, stop_flag

Function

Terminate the executing program in the specified task the next time it executes a STOP
program instruction (or its equivalent).

Suspend processing of an executable program until a program running in the specified task
completes execution.

Usage Considerations
The CYCLE.END instruction has no effect if the specified program task is not active.

The CYCLE.END instruction suspends execution of the program containing the instruction
until the specified program task completes execution. If a program is aborted while its
execution is suspended by a CYCLE.END instruction, the program task specified by the
CYCLE.END instruction will still be terminated (if the stop_flag is TRUE).

Parameters

task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be monitored or
terminated.

If the task number is not specified, the CYCLE.END instruction
always accesses task #0.

stop_flag Optional real value, variable, or expression interpreted as a logical
(TRUE or FALSE) value. If the parameter is omitted or has the value
0, the specified task is not stopped-but the CYCLE.END has all its
other effects (see below). If the parameter has a nonzero value, the
selected task stops at the end of its current cycle.

Details

If the stop_flag parameter has a TRUE value, the specified program task will terminate the
next time it executes a STOP program instruction (or its equivalent), regardless of how many
program cycles are left to be executed.

NOTE: CYCLE.END will not terminate a program with continuous internal loops. Such a
program must be terminated with the ABORT command or instruction.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 142

CYCLE.END program instruction

Regardless of the stop_flag parameter, this instruction will wait until the program actually is
terminated. If the program being terminated loops internally so that the current execution
cycle never ends, the CYCLE.END instruction will wait forever.

To proceed from a CYCLE.END that is waiting for a program to terminate, abort the program
that is waiting for a CYCLE.END by typing an ABORT command for the program task that
executed the CYCLE.END instruction.

Example

The following program segment shows how a program task can be initiated from another
program task (the ABORT and CYCLE.END program instructions are used to make sure the
specified program task is not already active):

ABORT 3 ;Abort any program already active
CYCLE.END 3 ;Wait for execution to abort
EXECUTE 3 new.program ;Start up the new program

Related Keywords
ABORT monitor command
ABORT program instruction
CYCLE.END monitor command
EXECUTE monitor command
EXECUTE program instruction
KILL monitor command

KILL program instruction
STATUS monitor command
STATUS real-valued function

STOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 143

DBLB real-valued function

DBLB real-valued function

Syntax

DBLB ($string, first_char)

Function

Return the value of eight bytes of a string interpreted as an IEEE double-precision floating-
point number.

Parameters
$string String expression that contains the eight bytes to be converted.
first_char Optional real-valued expression that specifies the position of the first

of the eight bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first eight bytes of
the string are extracted.

If first_charis greater than 1, it is interpreted as the character
position for the first byte. For example, a value of 2 means that the
second through ninth bytes are extracted.

If first_char specifies eight bytes that are beyond the end of the input
string, an error is generated .

Details

Eight sequential bytes of the given string are interpreted as being a double-precision (64-bit)
floating-point number in the IEEE standard format. This 64-bit field is interpreted as follows:

52 5l 0

=
a1
=
[

s exp fraction

Bytes 1-2 Bytes 34 Bytes 5-6 Bytes 7-8

where
s is the sign bit, s = 0 for positive, s = 1 for negative.
exp is the binary exponent, biased by -1023.

fraction is a binary fraction with an implied 1 to the left of the binary point.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 144

DBLB real-valued function

For 0 < exp < 2047, the value of a floating point number is:

-1% % (1.fraction) * 28%p -1023

Double-precision real values have the following special values:

exp fraction Description
0 Zero Zero value
0 Nonzero Denormalized
number
2047 Zero Signed infinity
2047 Nonzero Not-a-number

The range for normalized numbers is approximately 2.2 x 107398 to0 1.8 x 10307

The main use of this function is to convert a binary floating-point number from an input data
record to a value that can be used internally by eV+.

Example

DBLB ($SCHR ("H3F) +$CHR ("HFO0) +$SCHR (0) +$CHR (0)
+$CHR (0) +$CHR (0) +SCHR (0) +$SCHR (0)) ;Returns 1.0

Related Keywords

ASC real-valued function

$DBLB string function

DOUBLE (type keyword for AUTO, GLOBAL, and LOCAL)
FLTB real-valued function

$FLTB string function

INTB real-valued function

TRANSB transformation function

VAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 145

$DBLB string function

$DBLB string function

Syntax
$DBLB (value)

Function

Return an 8-byte string containing the binary representation of a real value in double-
precision IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its IEEE
floating-point binary representation.

Details

Areal value is converted to its binary representation using the IEEE double-precision
standard floating-point format. This 64-bit value is packed as eight successive 8-bit
characters in a string. See the DBLB real-valued function for a more detailed description of
IEEE floating-point format.

The main use of this function is to convert a double-precision real value to its binary
representation in an output record of a data file.

Example
SDBLB(1.215)

Returns a character string equivalent to:

SCHR ("H3F) +$CHR ("H3F) +$CHR ("H70) +
SCHR ("HA3) +$SCHR ("HD7) +$SCHR ("HOA) +$SCHR ("H3D) +$SCHR ("H71)

Related Keywords

$CHR string function

DOUBLE (type keyword for AUTO, GLOBAL, and LOCAL)
$FLTB string function

FLTB real-valued function

$INTB string function

$TRANSB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 146

DCB real-valued function

DCB real-valued function

Syntax
DCB (value)

Function

Convert BCD digits into an equivalent integer value.

Usage Considerations
No more than four BCD digits can be converted.

The DCB function is most often used with the BITS real-valued function to decode input from
the digital input signal lines.

Parameter

value Real value interpreted as a binary bit pattern representing up to four
BCD digits.

NOTE: An error is reported if any digit is not a valid BCD digit. That is, if a digit is greater
than 9.

Example

If external input signals 1001-1008 (8 bits of input) receive two BCD digits from an external
device, then the instruction

input = DCB(BITS (1001, 8))

sets the real variable input equal to the integer equivalent of the BCD input on the specified
signals.

Related Keyword

BCD real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 147

DECEL.100 system switch

DECEL.100 system switch

Syntax
... DECEL.100[robot_num]

Function

Enable or disable the use of 100 percent as the maximum deceleration for the ACCEL
program instruction.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an integer)
that indicates the number of the robot affected. If the index is
omitted or zero in an ENABLE or DISABLE command or instruction,
the settings for all robots are altered. Otherwise, only the setting for
the specified robot is affected.

Details

When DECEL.100 is enabled for the selected robot, the maximum deceleration percentage
defined by the SPEC utility program is ignored, and a maximum deceleration of 100% is used
instead. This maximum is used to limit the value specified by the ACCEL program instruction.
By default, DECEL.100 is disabled for all robots.

Example

DECEL.100[2] ;Cause ACCEL to use 100% for maximum
;jdeceleration for robot #2

Related Keywords
ACCEL program instruction
ACCEL real-valued function
SPEED monitor command

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 148

$DECODE string function

$DECODE string function

Syntax

$DECODE ($string_var, string_exp, mode)

Function

Extract part of a string as delimited by given break characters.

Usage Considerations
$DECODE modifies the input $string_var variable as well as returning a string value.

The test for break characters is always performed without regard for the case of the
characters in the input string.

The break characters are treated as individual characters, independent of the other
characters in the string that defines them.

Parameters
$string_ String variable that contains the string to be scanned. After the
var function is processed, this variable will contain the portion of the

original string that was not returned as the function value.

NOTE: This parameter is modified by the function and cannot be specified as a string
constant or expression.

If the program causes the same variable to receive the function value, the variable
will end up containing the value returned by the function.

string_exp String constant, variable, or expression that defines the individual
break characters, which are to be considered as separating the
substrings of interest in the input string value. (The order of the
characters in this string has no effect on the function operation.)

mode Optional real value, variable, or expression that controls the
operation performed by the function. Mode values are -3, -2, 0, and
1.

If the mode is negative or zero, or is omitted, characters up to the
first break character are removed from the input string and returned
as the output of the function.

If the mode is greater than zero, characters up to the first nonbreak
character are removed from the input string and returned as the

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 149

$DECODE string function

output of the function. That is, this case returns all the leading break
characters in the input string.

Details

This function is used to scan an input string and return the initial substring, as delimited by
any of a group of break characters. After the substring is returned by the function, it is
deleted from the input string.

The string returned (and deleted) can either contain no break characters (mode 0), or
nothing but break characters (mode 1). That is, $DECODE can return (and delete) all the
characters up to the first break character-usually some desired substring; or the function can
return (and delete) all the leading break characters-which are usually discarded.

By alternating the modes, groups of desired characters can be picked from the input string
(see the first example below).

The modes -2 and -3 copy all nonbreak characters up to the first break characters plus the
first break character. Mode -2 is equivalent to the following instructions:

$s = S$DECODE ($i, $break, 0) ;Extract up to 1lst break character
$s = $s+$MID(S$1i,1,1) ;Add on 1st break character
$1 = $SMID(S$1i,2,127) ;Remove the break character

The following instruction can perform these operations:

Ss = SDECODE ($i, Sbreak, -2) ;Extract through 1st break character

Mode -3 is equivalent to mode -2 if a break character is present. However, if no break
character is contained in the input string, mode -3 returns an empty string and leaves the
input string unchanged.

Examples

The instructions below pick off consecutive numbers from the string $input, assuming that
the numbers are separated by some combination of spaces and commas.

The first instruction within the DO structure sets the variable $temp to the substring from
$input that contains the first number (and removes that substring from $input). The VAL
function is used to convert the numeric string into its corresponding real value, which is
assigned to the next element of the real array value. The $DECODE function is used a second
time to extract the characters that separate the numbers (the characters found are ignored).

i =20 ;Set array index
DO
Stemp = S$DECODE ($string var," ,",0) ;Pick off a number
string
value[i] = VAL (Stemp) ;Convert to real value
Stemp = SDECODE ($string var," ,",1) ;Discard spaces and

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 150

$DECODE string function

commas

i = 1i+1 ;Advance the array
index
UNTIL $string var == "" ;Stop when input is
empty

In a case where $string _var contains a sequence of numeric values (as strings) separated by
spaces, commas, or any combination of spaces and commas, such as

$string_var = "1234. 93465.2, .4358,3458103"

executing the above instructions results in the first four elements of the value array having
the following values:

value[0] = 1234.0
value[l] = 93465.2
value[2] = 0.4358
value[3] = 3458103.0

The string variable input ($string_var) also contains an empty string ("").

As shown above, use of the $DECODE function normally involves two string variables: the
input variable and the output variable. If you are interested only in the characters up to the
first break character, and want to discard all the characters that follow, the same variable
can be used for both input and output. In the following instruction, for example, the same
variable is used on both sides of the equal sign because the programmer wants to discard all
the white space (that is, space and tab) characters at the end of the input string.

NOTE: The break characters are specified by a string expression consisting of a space
character and a tab character.

$line = $SDECODE ($line,™ "+S$SCHR(9),0) ;Discard trailing blanks
Related Keywords

$TRUNCATE string function

$MID string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 151

DECOMPOSE program instruction

DECOMPOSE program instruction

Syntax
DECOMPOSE array__name[index] = location

Function

Extract the (real) values of individual components of a location value.

Parameters

array_name Name of the real-valued array that has its elements defined.

index Optional integer value(s) that identifies the first array element to
be defined. Zero will be assumed for any omitted index. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

location Location value that is decomposed into its component values.
This can be a transformation value or a precision-point value, and
can be defined by a variable or a location-valued function.

Details

This instruction assigns values to consecutive elements of the named array, corresponding
to the components of the specified location.

If the location is represented as a transformation value, six elements are defined,
corresponding to X, Y, Z, yaw, pitch, and roll.

If the location is represented as a precision-point value, then from one to twelve elements
are defined (depending on the number of robot joints), that correspond to the individual joint
positions.

Examples

The following code assigns the components of transformation part to elements 0 to 5 of
array x:

DECOMPOSE x[] = part

The following code assigns the components of precision point #pick to array element angles
[4] and those that follow it:

DECOMPOSE angles[4] = #pick

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 152

DECOMPOSE program instruction

Related Keywords
#PPOINT precision-point function

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 153

$DEFAULT string function

$DEFAULT string function

Syntax
$DEFAULT (mode)

Function

Return a string containing the current or initial system default device, unit, and directory
path for disk file access.

Usage Considerations

Parentheses must be included even when mode is omitted.
Parameter
mode Optional real value, variable, or expression (interpreted as an integer)

that specifies the default path to be returned, as follows:

. Ifthe parameteris omitted, or has the value zero, the current
system default path is returned.

. Ifthe parameter has the value one, the default path returnedis
the one that was in effect immediately after the eV+ system was
booted from disk.

Details

The system default device, unit, and directory path can be set by the CD or DEFAULT monitor
command. The $DEFAULT function returns the current or initial default values as a string.
The string contains the portions of the following information that have been set:

device>disk unit:directory path

where

device is one of the following:
DISK a local disk
SYSTEM a disk device, drive, and subdirectory path
currently set with the DEFAULT command

For more details on valid devices, see the ATTACH program
instruction on page 67.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 154

$DEFAULT string function

disk_unit is the disk unit specified to the DEFAULT monitor command. The
colon (:) is omitted if no unit was specified.

directory_path is any input to the DEFAULT command that followed the device
and unit. The directory path is omitted if no additional input was
specified.

Example

The following commands set the default drive specification to DISK>D:\TEST\, and then
display it on the terminal for confirmation:

DEFAULT = DISK>D:\TEST\ LISTS $DEFAULT ()

Related Keywords
CD monitor command

DEFAULT monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 155

DEFBELT program instruction

DEFBELT program instruction

Syntax

DEFBELT %belt_var = nom_trans, belt_num, vel_avg, scale_fact

Function

Define a belt variable for use with a conveyor tracking robot.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.

The DEFBELT program instruction supports up to six belt encoders, depending on the
hardware configuration.

The BELT switch must be enabled for this instruction to be executed.

The DEFBELT program instruction cannot be executed while the robot is moving relative to
the specified belt variable.

When a belt variable is initialized using this instruction, its window parameters are set to
allow any location in the working volume of the robot. That is, no belt window is set. (See the
WINDOW program instruction.)

When a belt variable is initialized with the DEFBELT program instruction, error checking is
initiated for the associated belt encoder. This error checking can be turned off by disabling
the BELT system switch or by using the ZERO command to reinitialize the eV+ system.

Parameters

%belt_var Name of the belt variable to be defined. (All appearances of belt
variables must be prefixed with the percent character [%].)

nom_trans Transformation value that defines the position and orientation of
the conveyor belt. This can be provided by a transformation
variable, a transformation-valued function, or a compound
transformation.

The X axis of the nominal transformation defines the direction of
travel of the belt. Normally, the belt moves along the direction of
+X. The X-Y plane defined by this transformation is parallel to the
surface of the belt. The (X, Y, Z) position defined by the nominal
transformation defines the approximate center of the belt with
respect to the robot.

belt_num The number of the encoder used for reading the instantaneous

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 156

DEFBELT program instruction

location of the belt. Belts numbered from 1 to 6 can be specified.
This can be specified with a constant, a variable, or an expression.

vel_avg (This parameter is currently ignored, but some value must be
provided.)
scale_fact The calibration constant that relates motion of the conveyor belt

with counts of the encoder mounted on the conveyor. This value
(which can be supplied as a constant, a real variable, or an
expression) is interpreted as having the units in millimeters of belt
travel per encoder count.

Details

A conveyor belt is modeled by a belt variable. In addition to the parameters for the DEFBELT
program instruction, a belt variable contains the following information:

« Window parameters, which define the working range of the robot along the belt. (Set
with the WINDOW instruction.)

« An encoder offset, which is used to adjust the origin of the belt frame of reference. (Set
with the SETBELT instruction.)

Belt variables have the following characteristics:

« Belt variable names must always be preceded by the percent character (%), for
example, %main.belt. Otherwise, the normal rules for variable names apply.

« Belt variable arrays are allowed, for example, %b[x].
« Belt variables can be passed as subroutine parameters just like other variables.

« Belt variables can be defined only with the DEFBELT instruction-there is no
assignment instruction for them. Thus, the following are not valid instructions:

$new_belt = %old belt
SET %new_belt = %old belt

« Belt variables cannot be stored on a mass-storage device. (Variables used to define the
parametersin a DEFBELT instruction can be stored, however.)

Example

The following instruction defines the belt variable %belt.var. The value of b.num must be the
number of the encoder to be associated with this belt variable. The variable b.num is also
used as an index for arrays of data describing the position and orientation of the belt, its
velocity smoothing, and the encoder scale factor.

DEFBELT %belt.var = belt.nom[b.num], b.num, v.avg[b.num], belt.sf

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 157

DEFBELT program instruction

[b.num]

Related Keywords

BELT system switch

BELT system switch
BELT.MODE system parameter
BSTATUS real-valued function
SETBELT program instruction
WINDOW program instruction
WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 158

DEFINED real-valued function

DEFINED real-valued function

Syntax
DEFINED (var_name)

Function

Determine whether a variable has been defined.

Parameter
var_name The name of a location, string, or real variable. Both scalar
variables and array variables are permitted. A location variable can
be a transformation, a precision point, or a belt variable.
Details

The value of the specified variable is tested. If the value is defined, the function returns the
value TRUE. Otherwise, the value FALSE is returned.

For array variables, if a specific array element is specified, the single array element is tested.
If no array element is specified, this function returns a TRUE value if any element of the
array is defined.

NOTE: For nonreal arguments (i.e., strings, locations, transformations) that are passed
in the argument list of a CALL statement, you can test to see if the variable is defined or
not. However, you cannot assign a value to undefined nonreal arguments within the
CALLed program. If you attempt to assign a value to an undefined nonreal argument, you
receive an undefined value error message.

Therefore, when using DEFINED to test for user input, be sure to assign a default value to
the variable before testing it. See the example below.

Examples

.PROGRAM test ($s)
AUTO S$tmp
Stmp = "default"
IF DEFINED ($s) THEN

Stmp = $s

END
TYPE /C3 "The string is: ", $tmp

When the example above is executed with a value:

ex test ("ABCD")

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 159

DEFINED real-valued function

the routine returns:

The string is: ABCD
When the example above is executed without a value:
ex test ()
the routine returns:
The string is: default
The instruction:
DEFINED (base part)
returns a value of TRUE if the variable base_ part is defined.
The instruction:

DEFINED (corner[])
returns a value of TRUE if any element of the array corner has been defined.
Related Keywords

STATUS real-valued function

TESTP monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 160

DELAY program instruction

DELAY program instruction

Syntax

DELAY time

Function

Cause robot motion to stop for the specified time.

Usage Considerations

The robot stops during the delay, but the wait and nulling normally associated with a motion
BREAK do not occur.

Program execution continues during the delay, up to the next motion instruction in the
program. (eV+ system timers can be used to control the timing of program execution. The
DELAY instruction should not be used for that purpose.)

The DELAY instruction is interpreted as a straight-line move-to-here motion instruction.
(See below for the consequences of that interpretation.)

The DELAY instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the DELAY instruction
causes an error.

If the AMOVE instruction has been executed to prepare for motion of an extra axis, execution
of the DELAY instruction cancels the effect of the AMOVE instruction.

Parameter
time Real value, variable, or expression that specifies the length of time, in

seconds, that the robot is to pause.

A time value less than 0.016 (16 milliseconds) resultsin a 16-
millisecond delay.

Details

The DELAY instruction is processed as a robot motion. As a result, the following
consequences occur when a DELAY is executed:

1. Any pending hand actuation takes place during the execution of the DELAY
instruction.

2. Any temporary trajectory switches that have been specified are cleared after the

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 161

DELAY program instruction

conclusion of the delay.

3. Any pending configuration change is canceled.

NOTE: When DRY.RUN mode is in effect, DELAY instructions do not cause any delay.

Examples

DELAY 2.5

Causes all robot motion to stop for 2.5 seconds and any pending hand operation to occur.
Clears any temporary trajectory switches that may be set, and cancels any pending requests
for configuration change.

DELAY pause.l

Stops all robot motion for pause.1 seconds.

Related Keywords
DURATION program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 162

DELAY.IN.TOL system switch

DELAY.IN.TOL system switch

Syntax
... DELAY.IN.TOL [robot_num]

Function

Controls the timing of COARSE or FINE nulling after eV+ completes a motion segment.

Parameter
robot__ Optional real value, variable, or expression (interpreted as an integer)
num that indicates the number of the robot affected. If the index is omitted

or zero in an ENABLE or DISABLE command or instruction, the settings
for all robots are altered. Otherwise, only the setting for the specified
robot is affected.

Details

The DELAY.IN.TOL system switch is disabled by default for all robot device modules, except
the Delta robot device module.

If the switch is disabled, COARSE or FINE nulling completes whenever eV+ has completed a
motion segment and the robot is tracking the trajectory to within the coarse or fine
tolerance. The actual robot location might not be within the tolerance of the endpoint.

If the switch is enabled, COARSE or FINE nulling completes whenever eV+ has completed a
motion segment and the actual robot location is within the specified coarse or fine tolerance
of the endpointof that motion segment.

Usage Considerations

For many applications, enabling this switch produces the best nulling behavior. However, the
switch should be disabled for backward compatibility with previous eV+ systems.

Related Keywords

COARSE program instruction

FINE program instruction

NULL program instruction

NONULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 163

DELAY.POWER.OFF system switch

DELAY.POWER.OFF system switch

Syntax
... DELAY.POWER.OFF

Function

Enable/disable the ESTOP timer delay feature for servo errors.

Usage Considerations

This switch is only operational for systems equipped with an AWC-II board as the main CPU.
For program compatibility, the DELAY.POWER.OFF system switch is recognized by eV+
systems for both AWC-II-based controllers and SmartController systems, but the switch has
no effect on the latter.

Details

When DELAY.POWER.OFF is disabled (default), servo errors will cause the robot power to be
disabled immediately, without an ESTOP timer delay.

When DELAY.POWER.OFF is enabled, servo errors will use the ESTOP timer delay function
just as if the ESTOP button had been pressed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 164

DEPART and DEPARTS program instruction

DEPART and DEPARTS program instruction

Syntax
DEPART distance
DEPARTS distance

Function

Start a robot motion away from the current location.

Usage Considerations
DEPART causes a joint-interpolated motion.

DEPARTS causes a straight-line motion, during which no changes in configuration are
permitted.

These instructions can be executed by any program task as long as the task has attached a
robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Parameter

distance Real-valued expression that specifies the distance (in millimeters) along
the robot tool Z axis between the current robot location and the desired
destination.

A positive distance moves the tool back (toward negative tool Z) from
the current location; a negative distance moves the tool forward
(toward positive tool Z).

Details

These instructions initiate a robot motion to a new location, which is offset from the current
location by the distance given, measured along the current tool Z axis.

Examples

DEPART 80

Moves the robot tool 80 millimeters back from its current location using a joint-interpolated
motion.

DEPARTS 2*offset

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 165

DEPART and DEPARTS program instruction

Withdraws the robot tool (2 * offset) millimeters along a straight-line path from its current
location.

Related Keywords
APPRO program instruction
APPROS program instruction
MOVE program instruction
MOVES program instruction
MOVEF program instruction
MOVESF program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 166

DEST transformation function

DEST transformation function

Syntax
DEST

Function

Return a transformation value representing the planned destination location for the current
robot motion.

Usage Considerations

The DEST function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the DEST function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "dest" cannot be used as a program name or variable name.

Details

DEST returns the location to which a robot was moving when its motion was interrupted.
This applies for all motion instructions, including:

1. Motions to named locations, such as

MOVE start
MOVES #part[10]

Note that even though the second instruction references a precision-point location
variable, the DEST function returns a transformation value during that motion.

2. Motions to locations defined relative to named locations or defined relative to the
current robot location
APPROS drop, 50.00

DEPART 30.00
MOVE SHIFT (HERE BY 50,0,10)

3. Motions to special locations such as

READY

The location value returned by the DEST function may not be the same as the location at
which the robot stops if the motion of the robot is interrupted for some reason. For example,
if the RUN/HOLD button on the pendant is pressed, the robot stops immediately, but DEST
still returns the location to which the robot was moving.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 167

DEST transformation function

If a motion is not begun because eV+ realizes the destination location cannot be reached (for
example, it is too far from the robot), then DEST is not set to the goal location.

Example

The DEST function is useful, for example, for continuing a motion that has been interrupted
by a reaction initiated by a REACTI instruction. The subroutine automatically invoked can
contain steps such as the following to process the interruption and resume the original

motion.
SET save = HERE
SET old.dest = DEST
old.speed = SPEED(3)

DEPART 50.0

APPRO
MOVES
SPEED
MOVES

save, 50.0
save
old.speed
old.dest

Related Keywords

HERE transformation function

#PDEST precision-point function

SELECT program instruction

SELECT real-valued function

;Record where the robot is
;Record where the robot was going
;Record the current motion speed
;Back away a safe distance

;Return to the original motion path
;...back to where we left

;Restore the original motion speed
;Continue toward original destination

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 168

DETACH program instruction

DETACH program instruction

Syntax
DETACH (logical_unit)

Function

Release a specified device from the control of the application program.

Usage Considerations
Detaching the robot causes a BREAK in continuous-path motion.

DETACH automatically forces an FCLOSE if a disk file or graphics window is open on the
specified device.

The robot is automatically attached to task 0 when the EXECUTE monitor command or
program instruction is processed to initiate that task and the DRY.RUN system switch is
disabled. All the other logical units are automatically detached when program execution
begins. (Other events that cause automatic detachment are listed below.)

Parameter
logical_unit Optional real value, variable, or expression (interpreted as an
integer) that identifies the device to be detached. (See the ATTACH
instruction for a description of logical unit numbers.)
The parentheses can be omitted if the logical unit number is
omitted (causing the robot to be detached).
Details

This instruction releases the specified device from control by the application program. (No
error is generated if the device was not attached.)

Control of the specified device can be returned to the program with the ATTACH instruction.

When logical_unit is 0 (or is omitted), the program releases control of the robot. While the
robot is detached, robot power can be turned off and on, the pendant can be used to move
the robot, and a different robot can be selected (if more than one robot is connected to the
system controller). A delay of one system cycle (16 ms) occurs when a robot is detached.

This is useful for applications that require you to define where the robot should be located for
certain operations. For such tasks a teaching program can DETACH the robot and then
output directions to you on the system terminal or the pendant. You can then use the
pendant to move the robot to the desired locations. The system terminal or the pendant can
be used for accepting input from you (the latter can be read by using the PENDANT function).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 169

DETACH program instruction

When a disk logical unit is detached, any device that was specified by the corresponding
ATTACH instruction is forgotten. Thus, a subsequent ATTACH instruction must specify the
device again if the default device is not desired.

The following events automatically DETACH all the logical units (except the robot) from the
affected program task:

« Processing of the EXECUTE command and instruction
« Processing of the KILL command and instruction

« Processing of the ZERO command

« Normal completion of program execution

Note, however, that if a program terminates execution "abnormally", all of its devices remain
attached, except that the terminal and the manual control pendant are detached. (Abnormal
termination of program execution refers to any cause other than HALT or STOP instructions.)
If the task is subsequently resumed, the program automatically reattaches the terminal and
pendant if they were attached before the termination.

NOTE: It is possible that another program task attached the terminal or pendant in the
meantime. This results in an error message when the stopped task is restarted.

DETACH ;Release program control of the robot.
DETACH (1) ;Discontinue program control of the
;manual control pendant.

Related Keyword

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 170

DEVICE program instruction

DEVICE program instruction

Syntax

DEVICE (type, unit, error, p1, p2, ...) out[i], in[j], out_trans, in_trans

Function

Send a command or data to an external device and, optionally, return data back to the
program. (The actual operation performed depends on the device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types and
commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder

1 = (Not used)

2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision

5 = 1394 bus (for Omron Adept use only)

unit Real value, variable, or expression (interpreted as an integer) that
indicates the device unit number. The value must be in the range 0 to
(max -1), where max is the maximum number of devices of the
specified type. The value should be 0 if there is only one device of the
given type.

error Optional real variable that receives a standard system error number if
this instruction failed. If this parameter is omitted, any device error
stops program execution. If the error parameter is specified, the
program must explicitly check it to detect errors.

pl, p2, Optional real values, variables, or expressions, the values of which are

. sent to the device as part of the command. The number of parameters
specified, and their meanings, depend upon the particular device type
being accessed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 171

DEVICE program instruction

out[] Optional real array that contains data values that are sent to the device
as part of a command. The actual data sent depends upon the device
type and command being sent to the device.

i Optional real value, variable, or expression (interpreted as an integer)
that indicates the first array element to be considered in the array out
[1. Element 0 is accessed first if no index is specified.

in[] Optional real array that receives any data values returned from the
device as the result of the command. The actual data returned depends
upon the device type and the command.

j Optional real value, variable, or expression (interpreted as an integer)
that indicates the first array element to be filled in the array in[].
Element 0 is accessed first if no index is specified.

out_ Optional transformation variable, function, or compound

trans transformation that defines a transformation value to be sent to the
device as part of the command. The actual data sent depends on the
device type and the command.

in_trans Optional transformation variable that receives a data value returned
from the device as the result of a command. The actual data returned
depends upon the device type and the command.

Details

DEVICE is a general-purpose instruction for accessing external devices. For more information
and examples, see the section External Encoder Device in the eV+ Language User's Guide.)
Related Keywords

DEVICE real-valued function

DEVICES program instruction

SETDEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 172

DEVICE real-valued function

DEVICE real-valued function

Syntax
DEVICE (type, unit,error, p1, p2,...)

Function

Return a real value from a specified device. The value may be data or status information,
depending upon the device and the parameters.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific device types
and information requests.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder

1 = (Not used)

2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision

5 = 1394 bus (for Omron Adept use only)

unit Real value that indicates the device unit number. The value must be in
the range 0 to (max -1), where max is the maximum number of devices
of the specified type. The value should be 0 if there is only one device of
the given type.

error Optional real variable that receives a standard system error number,
which indicates if this function succeeded or failed. If this parameter is
omitted, any device error stops program execution. If error is specified,
the program must check it to detect errors.

pl, p2, Optional real values that are sent to the device as part of the request.
. The number of values specified and the meanings of the values depend
upon the particular device type.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 173

DEVICE real-valued function

Details

DEVICE is a general-purpose function for returning data and status information from external
devices. For details and examples see the supplementary documentation for specific devices.

For information on use of the DEVICE function to access external encoders, see the section
External Encoder Device in the eV+ Language User's Guide.

For systems equipped with ACE Sight, the DEVICE instruction is used to configure vision
system memory allocation and frame buffer configuration.

Related Keywords
DEVICE program instruction

DEVICES program instruction
SETDEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 174

DEVICES program instruction

DEVICES program instruction

Syntax
DEVICES (type, unit, error, p1, p2, ...) $out, $in

Function

Send a command or data to an external device and optionally return data. The actual
operation performed depends on the device referenced.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific device types
and commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder

1 = (Not used)

2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision

5 = 1394 bus (for Omron Adept use only)

unit Real value that indicates the device unit number. The value must be in
the range 0 to (max -1), where max is the maximum number of devices
of the specified type. The value should be 0 if there is only one device of
the given type.

error Optional real variable that receives a standard system error number if
this instruction failed. If this parameter is omitted, any device error
stops program execution. If the error parameter is specified, the
program must check it to detect errors. The value is negative if there
was an error. Otherwise, the positive value indicates the number of
data bytes that were returned in the $in parameter.

pl, p2, Optional real values that are sent to the device as part of a command.
. The number of values specified and the meanings of the values depend
upon the particular device type.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 175

DEVICES program instruction

$out Optional string expression, variable, or array that defines a string value
to be sent to the device as part of the command. The actual data that
should be sent depends upon the device type and the command.

When the $out parameter is specified as an array, the total length of
the string value must be less than or equal to 520 bytes.

If an array is specified, and no index is specified, element 0 is accessed
first.

$in Optional string variable or array that receives any data values returned
from a device as the result of the command. The actual data returned
depends upon the device type and the command.

The error variable receives the number of input bytes returned. When
the $in parameter is specified as an array, up to 512 bytes may be
returned, packed in up to four successive string array elements.

If an array is specified, and no index is specified, element 0 is accessed
first.

Details

DEVICES is a general-purpose instruction for accessing external devices. It is similar to the
DEVICE program instruction except that data items are sent and received as strings rather
than real values.

NOTE: Similar to the CALL and CALLS instruction pair, this instruction is a string-based
version of the DEVICE instruction. Thus, the name DEVICES can be thought of as "device
s", rather than the plural of "device".

For details and examples see the supplementary documentation for specific devices.

Related Keywords
DEVICE program instruction
DEVICE real-valued function

SETDEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 176

DISABLE program instruction

DISABLE program instruction

Syntax
DISABLE switch, ..., switch

Function

Turn off one or more system control switches.

Usage Considerations

If a specified switch accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned off.

The name can be abbreviated to the minimum length that uniquely
identifies the switch. That is, for example, the MESSAGES switch can be
referred to with ME since there is no other switch with a name
beginning with the letters ME.

Details

System switches control various aspects of the operation of the eV+ system, including some
optional subsystems such as vision. The Switch entry in the index for this document directs
you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the option
documentation for details.

When a switch is disabled, or turned off, the feature it controls is no longer functional or
available for use. Turning a switch on with the ENABLE monitor command or program
instruction makes the associated feature functional or available for use.

NOTE: The system switches are shared by all the program tasks. Thus, care should be
exercised when multiple tasks are disabling and enabling switches-otherwise, the
switches may not be set correctly for one or more of the tasks. Disabling the DRY.RUN
switch does not have an effect until the next EXECUTE command or instruction is
processed for task #0, an ATTACH instruction is executed for the robot, or a CALIBRATE
command or instruction is processed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 177

DISABLE program instruction

The SWITCH monitor command or the SWITCH real-valued function can be used to
determine the status of a switch at any time. The SWITCH program instruction can be used,
like the DISABLE instruction, to disable a switch.

Example

DISABLE MESSAGES ;Turns off the MESSAGES switch.

Related Keywords
ENABLE monitor command
ENABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 178

DISTANCE real-valued function

DISTANCE real-valued function

Syntax

DISTANCE (location_1, location_2)

Function

Determine the distance between the points defined by two location values.

Parameter

location_1 Transformation value that defines the first point of interest. This
can be a function, a variable, or a compound transformation.

location_2 Transformation value that defines the second point of interest. This
can be a function, a variable, or a compound transformation.

Details

Returns the distance in millimeters between the points defined by the two specified
locations. The order in which the locations are specified does not matter. Also, the
orientations defined by the locations have no effect on the value returned.
Example

The statement

x = DISTANCE (HERE, part)

sets the value of the real variable x to be the distance between where the robot tool point is
currently located and the point defined by the transformation part.

Related Keyword

IDENTICAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 179

DN.RESTART program instruction

DN.RESTART program instruction

Syntax
DN.RESTART

Function

Restarts DeviceNet communication if the CanBus goes offline.

Details

The eV+ DeviceNet interface goes offline if you disconnect it from the actual network or if too
many errors occur during operation. DN.RESTART forces eV+ to reinitialize the DeviceNet
interface as if you rebooted your system.

Related Keywords
DEVICENET monitor command
DN.RESTART monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 180

DO program instruction

DO program instruction

Syntax
DO

Function

Introduce a DO program structure.

Usage Considerations

The DO program structure must be concluded with an UNTIL instruction.

Details

The DO structure provides a way to control the execution of a group of instructions based on
a control expression. The syntax for the DO structure is as follows:

DO
group of steps
UNTIL logical expression

Processing of the DO structure can be described as follows:
1. Thegroup of instruction steps is executed.

2. Thelogical expression is evaluated. If the result is FALSE, return to item 1. Otherwise,
proceed to item 3.

3. Program execution continues at the first instruction after the UNTIL step.

When this structure is used, it is assumed that some action occurs within the group of
enclosed instructions that changes the result of the logical expression from TRUE to FALSE
when the structure should be exited. Alternately, logical_expression can be replaced with an
expression that evaluates the state of a digital I/O signal (see example).

Note that the group of instructions within the DO structure is always executed at least one
time. (The WHILE structure differs in that respect.)

There do not need to be any instructions between the DO and UNTIL instructions. When
there are no such instructions, the UNTIL criterion is continuously evaluated until it is
satisfied, at which time program execution continues with the instructions following the
UNTIL instruction.

Example

The following example uses a DO structure to control a task that involves moving parts from
one place to another. The sequence assumes that the digital signal line buffer.full changes to

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 181

DO program instruction

the on state when the parts buffer becomes full. (The robot should then perform a different
sequence of motions.)

DO
CALL get.part()
CALL put.part()
UNTIL SIG(buffer.full)

Related Keywords
DO monitor command
EXIT program instruction
NEXT program instruction
UNTIL program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 182

DQOS program instruction

DOS program instruction

Syntax

DOS string, error

Function

Execute a program instruction defined by a string expression.

Usage Considerations

Before the instruction is executed, the string must be translated from ASCII into the internal
representation used by eV+. Thus, the instruction executes much more slowly than a
normal program instruction.

The string cannot define a declaration statement or most of the control structure
statements.

The DOS instruction is ignored if the string defines a comment line or a blank line.
Parameters

string String constant, variable, or expression that defines the program
instruction to be executed. The instruction may contain a label field
(which is ignored) and may be followed by a standard comment field.
Leading and trailing spaces and tabs are ignored.

error Optional real variable that receives any parsing or execution error
generated by the instruction. The value is set to 1 if the instruction
succeeds. If the instruction fails, a standard eV+ error number is
returned.

If this parameter is omitted and an error occurs, execution of the
program stops and the appropriate error message is displayed.

Details

The DOS (DO String) instruction provides a means for modifying a program on the fly. That
is, the embedded program instruction, which is defined by a string expression, is executed as
though it had been entered in the program as a normal instruction.

The instruction executes in the context of the current program. Thus, any subroutine
argument, automatic variable, or local variable can be accessed.

If a variable referenced in the instruction is not found in the current program context, the
variable is assumed to be global. Any new variables that are created by the instruction (for

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 183

DQOS program instruction

example, in an assignment statement) are created as globals. Normal variable type checking
is performed, and errors are generated if there are type conflicts.

The single-line control statements GOTO, IF ... GOTO, CALL, and CALLS are allowed and
execute normally. The multiline control structures (for example, CASE ... END, IF ... ELSE ...
END) cannot be executed by the DOS instruction.

Examples

DOS "var = 123"

Causes the variable var to be assigned the value 123. If var is undefined, a new global
variable named var is created. Any errors cause the program to stop executing.

DOS $ins, status

Causes the instruction contained in the string variable $ins to be executed. If an error occurs,
an eV+ error code is placed in the real variable status and execution continues.

Related Keywords

DO monitor command

MCS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 184

DRIVE program instruction

DRIVE program instruction

Syntax
DRIVE joint, change, speed

Function

Move an individual joint of the robot.

Usage Considerations

The DRIVE instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the DRIVE instruction
causes an error.

If the AMOVE instruction has been executed to prepare for motion of an extra axis, execution
of the DRIVE instruction cancels the effect of the AMOVE instruction.

Parameters

joint Number of the robot joint to be moved. This can be specified by a
constant, a variable, or an expression.

change The change desired in the joint position. This can be specified by a
constant, a variable, or an expression. The value can be positive or
negative.

The value is interpreted in the units used to measure the joint position.
That is, a change for a rotary joint must be the number of degrees the
joint is to move; a change for a linear joint must specify the number of
millimeters to move.

speed The temporary program speed to be used for the motion, considered as
a percentage of the current monitor speed setting. Again, this can be
specified by a constant, a variable, or an expression.

Details

Operates the single specified robot joint, changing its position by change amount (in
degrees or millimeters). The joint number, joint, can be 1, 2, ..., n, where n is the number of
joints the robot has.

The speed of the motion is governed by a combination of the speed given in this instruction
and the monitor SPEED setting. That is, the regular program speed setting is not used. (See

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 185

DRIVE program instruction

the SPEED monitor command and the SPEED program instruction for explanations of motion
speeds.)

The duration setting established by the DURATION instruction also affects the execution time
of the motion.
Example

Change the angle of joint 2 by driving the joint 62.4 degrees in the negative direction at a
speed of 75% of the monitor speed:

DRIVE 2,-62.4,75

Related Keywords
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 186

DRY.RUN system switch

DRY.RUN system switch

Syntax
... DRY.RUN

Function

Control whether or not eV+ communicates with the robot.

Usage Considerations

The DRY.RUN switch can be enabled or disabled by an application program, but the new
setting of the switch does not take effect until the next time any of the following events
occur:

1. An EXECUTE command or instruction is processed for task #0
2. Therobot is attached with an ATTACH instruction
3. A CALIBRATE command or instruction is processed

Before an application program changes the setting of the DRY.RUN switch, the program
must have the robot detached. Otherwise, an error results when the attempt is made to
change the switch setting.

Details

This system switch can be used to stop eV+ from sending motion commands to the robot
and expecting position information back from the robot. Thus, when the system is in
DRY.RUN mode, application programs can be executed to test for such things as proper
logical flow and correct external communication without having to worry about the robot
running into something. (Also see the TRACE system switch.)

The pendant can still be used to control the robot while the system is in DRY.RUN mode.

The DRY.RUN switch is sampled whenever a robot is attached. (Note that task #0 attempts
to attach the robot when program execution begins or is resumed.) The DRY.RUN setting for
a task can be changed during execution by DETACHing the robot, changing DRY.RUN, and
then ATTACHing the robot.

NOTE: Do not allow multiple tasks to change DRY.RUN simultaneously, since the
DRY.RUN state can then be different from that expected. Your programs should use a

software interlock in this case.

The DRY.RUN switch is initially disabled.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 187

DRY.RUN system switch

external devices driven by analog or digital output instructions still

WARNING: Digital and analog I/0O is not affected by DRY.RUN, so
operate.

Related Keywords
DISABLE monitor command
ENABLE monitor command
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 188

DURATION program instruction

DURATION program instruction

Syntax
DURATION time ALWAYS

Function

Set the minimum execution time for subsequent robot motions.

Usage Considerations
Unless the ALWAYS parameter is specified, only the next robot motion is affected.

DURATION 0 ALWAYS is assumed whenever program execution is initiated and when a new
execution cycle begins.

The DURATION instruction affects the DRIVE instruction but not the DELAY instruction.
The setting of the monitor SPEED command affects the results of the DURATION setting.

The DURATION instruction can be executed by any program task as long as the robot
selected by the task is not attached by any other task. The instruction applies to the robot
selected by the task.

If the eV+ system is not configured to control a robot, executing the DURATION instruction
causes an error.

Parameters

time Real-valued expression that specifies the minimum length of time (in
seconds) that subsequent robot motions take to perform (see below).

If the value is zero, robot motions are performed without consideration
of their time duration and use only the applicable values for SPEED and
ACCEL.

ALWAYS Optional keyword that determines how long the new duration will have
an effect.

If ALWAYS is included, the specified duration time applies to all
subsequent robot motions (until the duration setting is changed by
another DURATION instruction). The specified duration applies only to
the next robot motion if ALWAYS is not included.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 189

DURATION program instruction

Details

This instruction sets the minimum execution time for subsequent robot motions. For any
motion, the time specified by the DURATION instruction has no effect if the duration setting is
less than the time computed by the eV+ robot-motion trajectory generator (considering the
current motion speed and acceleration settings). However, if the duration is longer than the
time computed by the trajectory generator, the motion is slowed so that its elapsed time
corresponds approximately to the specified duration.

NOTE: Actual motion times may differ slightly from the duration setting due to
quantization effects and due to acceleration and deceleration profiling.

The duration instruction does not specify the duration of an entire motion but instead
specifies the minimum time of the constant-velocity segment plus one-half the acceleration
and deceleration segments. In this way, continuous-path motions (in which individual
motions are blended together) get the correct duration, but a single motion takes longer than
the specified duration. In other words, the time of motion is primarily defined either by the
value of DURATION or SPEED, using whichever value gives the longer time.

This instruction is very useful. Consider, for example, a situation where the value of a
periodic, external signal is employed to continuously correct the path of the robot while the
robot is moving. The DURATION instruction can be used to match the motion execution time
to the sensor sampling rate and processing time. This ensures that the robot is kept in motion
while new information is being processed. A sample program of this type is shown later.

Example

The following example reads an external sensor and moves to the computed robot location.
This sequence is repeated 20 times at intervals of 96 milliseconds (6/TPS seconds). This
assumes the default period (tick) of 16 milliseconds for the eV+ trajectory generator. Note
that the motion speed is set to a very large value to make sure the motion is paced by the
duration setting.

DURATION 6/TPS ALWAYS ;Each motion to be 6 ticks long
SPEED 200 ALWAYS ;Motion time determined primarily
;by DURATION, not SPEED
FOR i = 1 TO 20 ;Repeat 20 times...
CALL read.signal (loc) ;Get new step from sensor
MOVE loc ;Move to the location
END

Related Keywords
ACCEL program instruction
DELAY program instruction

DURATION real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 190

DURATION program instruction

SELECT program instruction
SELECT real-valued function
SPEED monitor command

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 191

DURATION real-valued function

DURATION real-valued function

Syntax
DURATION (select)

Function

Return the current setting of one of the motion DURATION specifications.

Usage Considerations

The DURATION function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, the DURATION function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Parameter

select Real-valued expression whose value determines which duration value
should be returned (see below).

Details

This function returns the user-specified minimum robot motion duration (in seconds)
corresponding to the select parameter value. (See the description of the DURATION
program instruction for an explanation of the specification of motion duration times.)

Different select values determine when the duration time returned applies, as listed below.
(All other values for the select parameter are considered invalid.)

Select DURATION value returned

2 Permanent minimum robot
motion duration (set by a
DURATION ... ALWAYS program
instruction)

3 Temporary motion duration for
the current or last motion

4 Temporary motion duration to
be used for the next motion

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 192

DURATION real-valued function

Related Keywords
CONFIG real-valued function
DURATION program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 193

DX, DY, DZ real-valued function

DX, DY, DZ real-valued function

Syntax

DX (location)
DY (location)
DZ (location)

Function

Return a displacement component of a given transformation value.

Parameter

location Transformation value from which a component is desired. This can be a

function, a variable, or a compound transformation.

Details

These three functions return the respective displacement components of the specified

transformation value.

NOTE: The DECOMPOSE instruction can also be used to obtain the displacement
components of a transformation value. If the rotation components are desired, that
instruction must be used. DECOMPOSE is more efficient if more than one element is

needed and the location is a compound transformation.

Example
Consider a transformation start with the following components:

125, 250, -50, 135, 50, 75

The following function references will then yield the indicated values:

DX (start) ;Returns 125.00
DY (start) ;Returns 250.00
DZ (start) ;Returns -50.00

Related Keywords
DECOMPOSE program instruction
RX transformation function

RY transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 194

DX, DY, DZ real-valued function

RZ transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 195

ELSE program instruction

ELSE program instruction

Syntax
ELSE

Function

Separate the alternate group of statements in an IF ... THEN control structure.

Usage Considerations

ELSE can be used only within an IF ... THEN ... ELSE ... END control structure.

Details

Marks the end of a group of statements to be executed if the value of the logical expression in
an IF logical_expr THEN control structure is nonzero, and the start of the group of
statements to be executed if the value is zero.

Related Keyword

IF ... THEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 196

ENABLE program instruction

ENABLE program instruction

Syntax
ENABLE switch, ..., switch

Function

Turn on one or more system control switches.

Usage Considerations
The ENABLE monitor command can be used when a program is executing.

If a specified switch accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned on.

The name can be abbreviated to the minimum length that uniquely
identifies the switch. That is, for example, the MESSAGES switch can be
referred to with ME, since there is no other switch with a name
beginning with the letters ME.

Details

System switches control various aspects of the operation of the eV+ system, including some
optional subsystems such as vision. The Switch entry in the index for this document directs
you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the option
documentation for details. For example, the switches associated with the ACE Sight options
are described in the ACE Sight User's Guide.

When a switch is enabled, or turned on, the feature it controls is functional and available for
use. Turning a switch off with the DISABLE monitor command or program instruction makes
the associated feature not functional or available for use.

NOTE: The system switches are shared by all the program tasks. Thus, care should be
exercised when multiple tasks are disabling and enabling switches. Otherwise, the
switches may not be set correctly for one or more of the tasks.

Disabling the DRY.RUN switch does not have an effect until the next EXECUTE command
or instruction is processed for task #0, an ATTACH instruction is executed for the robot, or
a CALIBRATE command or instruction is processed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 197

ENABLE program instruction

The SWITCH monitor command or the SWITCH real-valued function can be used to
determine the status of a switch at any time. The SWITCH program instruction can be used,
like the ENABLE instruction, to set a switch.

Example

ENABLE MESSAGES ;Turns on the MESSAGES switch.

Related Keywords
DISABLE monitor command
DISABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 198

$ENCODE string function

$ENCODE string function

Syntax

$ENCODE (output_specification, output_specification, ...)

Function

Return a string created from output specifications. The string produced is similar to the
output of a TYPE instruction.

Parameter

An output specification can consist of any of the following components (in any order)
separated by commas:

1. Astring expression.
2. Areal-valued expression, which is evaluated to determine a value to be displayed.

3. Format-control information, which determines the format of the output message.

Details

This function makes strings normally produced by the TYPE instruction available within a
program. That is, $ENCODE does not generate any output but, rather, creates a string value.

The following format specifiers can be used to control the display of numeric values. These
settings remain in effect for the remainder of the function parameter list unless another
specifier is used.

For all these specifiers, if a value is too large to be displayed in the given field width, the field
is filled with asterisk characters (*).

/D Use the default format, which is equivalent to /G15.8 (see
below), except trailing zeros and all but one leading space are
omitted.

The following format specifications accept a zero as the width field. This causes the
actual field size to vary to fit the value and all leading spaces to be suppressed. This is
useful when a value is displayed within a line of text or at the end of a line.

/En.m Format values in scientific notation (for example, -1.234E+02) in
fields n spaces wide with m digits in the fractional parts. If n is not
zero, it must be large enough to include space for a minus sign (if
the displayed value is negative), one digit to the left of the
decimal point, a decimal point (if m is not zero), m digits, and four

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 199

$ENCODE string function

or five characters for the exponent.

/Fn.m Format values in fixed-point notation (for example, -123.4) in
fields n spaces wide, with m digits in the fractional parts.

/Gn.m Format values in F format with m digits in the fractional parts if
that can be done in fields n spaces wide. Otherwise /En.m format
is used.

/Hn Format values as hexadecimal integers in fields n spaces wide.

/In Format values as decimal integers in fields n spaces wide.

/0n Format values as octal integers in fields n spaces wide.

The following specifiers can be used to insert special characters in the string:

/Cn Include the characters carriage return (CR) and line feed (LF) n
times.

If the string resulting from the $ENCODE function is output to the terminal, this
results in n blank lines if the control specifier is at the beginning or end of the
function parameter list; otherwise, n -1 blank lines result.

/un Include the characters necessary to move the cursor up n lines if
the resulting string is output to the terminal. (This works
correctly only if the TERMINAL parameter is correctly set for the
terminal being used.)

/Xn Include n spaces.

/B Include a character that beeps the terminal if the resulting string
is output to the terminal.

Example
The program statement:

Soutput = S$Soutput+S$ENCODE (/F6.2, count)

adds a formatted representation of the value of count to the string contained in $output.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 200

$ENCODE string function

The $ENCODE function provides a way of adding format control to the output from PROMPT
instructions. This is shown by the following example, in which the value of motor is displayed
as part of the prompt message to you.

PROMPT S$ENCODE (/B,"Start motor #",/I0,motor,™ (Y/N)?2 "), Sanswer

This PROMPT instruction beeps the terminal (/B), and displays the following user prompt
when the value of motor is 3:

Start motor #3 (Y/N)?

Related Keyword

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 201

END program instruction

END program instruction

Syntax
END

Function

Mark the end of a control structure.

Usage Considerations

Every END instruction must be part of a CASE, FOR, IF, or WHILE control structure.

Details

Every CASE, FOR, IF, and WHILE control structure must have its end marked by an END
instruction. The eV+ editor displays an error message when program editing is exited if the
correct number of END instructions do not exist in a program (that is, if there are too few or
too many).

Related Keywords

CASE program instruction

FOR program instruction

IF ... THEN program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 202

.END keyword

.END keyword

Syntax
.END

Function

Mark the end of the eV+ program.

Usage Considerations

The eV+ editors automatically add this line to the end of every program.

Details

Normally, you will not need to concern yourself with the .END step of programs-it is created
automatically by the eV+ editors. The only time you will see this step while working with the
eV+ system is when you issue a LISTP monitor command. Then you will see an .END step as
the last step of each program.

The .END is important, however, when a program is created on another computer for
transfer to the eV+ system. In that case, the programmer must be sure to include a line
starting with .END at the end of each program (the remainder of the line is ignored by eV+).
Programs missing the .END instruction do not load correctly into the eV+ system.

Related Keyword
.PROGRAM program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 203

ERROR real-valued function

ERROR real-valued function

Syntax

ERROR (source, select)

Function

Return the error number of a recent error that caused program execution to stop or caused a
REACTE reaction.

Usage Considerations

Executing a REACTE statement clears any errors for the current task and prevents the
ERROR function from returning errors as expected.

A FIFO buffer is available that receives all asynchronous errors that occur from the time an
enable power request is issued (using ENABLE POWER or the MCP) until power is disabled for
any reason. The FIFO is accessed using the ERROR() real-valued function.

The asynchronous FIFO is not valid while the robot is in the power-down initialization state.
User programs should wait until STATE(1) <> 0 before calling ERROR() with a source
parameter > 1000.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 204

ERROR real-valued function

Parameters

source Real value, variable, or expression (interpreted as an integer) whose value
selects the source of the error code as follows:

-2 Return additional error code for current robot.

ERROR(-2,0) returnsthe standard eV+ error number.

ERROR(-2,1) returnsthe motor mask for the current
robot. This bit mask indicates the motor(s)
referenced for the error number returned
by the instruction ERROR(-2,0). The LSB
indicates motor 1, etc. If the ERROR(-2, 1)
=0, the error is not associated with a
specific motor.

-1 Return the number of the most recent error from the
program in which the ERROR function is executed.

0 Return the number of the most recent error from the
program executing as task #0.

0 < source = 27

Return the number of the most recent error from the
program executing as the corresponding task number.

1001 < source < 1021

Asynchronous FIFO element n-1000, where n equals

1 Most recent item

2 Next older item, etc.

Returns 0 if no more FIFO elements exist. Valid select
parameter values for the FIFO are 0, 1, and 3.

The asynchronous FIFO is not valid while the robot is in
power-down initialization state. User programs should wait
until STATE(1) returns a nonzero value before using ERROR()
with source > 1000.

select Optional real value, variable, or expression (interpreted as an integer)
that selects the error information to be returned. (The value 0 is assumed

if this parameter is omitted.)

0 Return the error number of the most recent program

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 205

ERROR real-valued function

execution error (excluding I/0 errors-see IOSTAT) for the
specified program task.

1 If the most recent error (for the specified program task) had
an error code in therange -1100 to-1199, return the
variable part of the corresponding error message as a
numeric value. If the most recent error had an error code in
the range -1000 to -1099, return the variable portion of the
corresponding error message as a bit mask indicating the
joints or motors to which the error applies. Zero is returned if
the error did not have a variable portion in its message. (Also
see select = 3 below.)

2 Return the error number of the most recent error from an
MCS instruction executed by the specified program task.

3 Return the number of the robot associated with the most
recent error for the specified program task. Zero is returned if
the error was not associated with a specific robot. (Also see
select =1.)

Details

An eV+ task can access any errors that result in robot power being disabled. These errors
include the asynchronous messages that previously were output only to the monitor
window.

This function is especially useful in a REACTE subroutine program to determine why the
REACTE was triggered.

NOTE: The ERROR function does not report errors reported by the IOSTAT function.

See System Messagesfor a list of all the eV+ error messages and their error numbers.

As noted above, when the select parameteris 1, the value returned by this function should
be interpreted as a 6-bit numeric value. The following program illustrates how the value
should be interpreted.

Example Program: Return error message corresponding to an error code
.PROGRAM error.string(code, vcode, robot, S$msg)
; ABSTRACT: Return error message corresponding to error code(s).

7

; INPUTS: code Basic error code e.g., from
; [e.g., from ERROR(n) or IOSTAT (lun)]
; vcode Variable part of the error code

H [e.g., from ERROR(n,1)].

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 206

ERROR real-valued function

.END

robot Number of the robot associated with the error
[i.e., from ERROR(n,3)].

OUTPUTS: Smsg Corresponding error message may be null
AUTO i, n
Smsg = "" ;Assume no error
IF code < 0 THEN ;If there was an error...
Smsg = S$ERROR (code) ;Get base message string

; Add bit numbers if applicable.
IF (-1100 < code) AND (code <= -1000) THEN

n =1 ;Initialize bit mask
FOR i = 1 TO 7 ;For each of 7 bits
IF vcode BAND n THEN ;If this bit is set,
Smsg = $msg+S$SENCODE (1) ;add it to message
END
n = 2*n ;Shift the mask 1 bit
END

END
; Add numeric variable if applicable.
IF (-1200 < code) AND (code <= -1100) THEN
Smsg = $msg+S$SENCODE (vcode) ;Add number
END
; Add robot number if applicable.
IF robot AND (SELECT (ROBOT,-1) > 1) THEN
Smsg = S$msg+" (Robot"+S$SENCODE (robot)+")"
END
END

RETURN

Related Keywords

$ERROR string function

IOSTAT real-valued function

REACTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 207

$ERROR string function

$ERROR string function

Syntax

$ERROR (error_code)

Function

Return the error message associated with the given error code.

Parameter
error_code Real-valued expression, with a negative value, that identifies an
error condition.
Details

All the error codes returned by the IOSTAT function and by the ERROR real-valued function
can be converted into their corresponding eV+ error message strings with this function. (The
ERROR real-valued function must be used to determine the variable portion of the error
message for an error code less than or equal to -1000.)

See System Messages on page 584 for a list of all the eV+ error messages and their error
codes.

Example
The following program segment displays an error message if an I/O error occurs:
READ (5) $input
IF IOSTAT(5) < O THEN
TYPE "I/O error during read: ", S$ERROR(IOSTAT(5))

HALT
END

Related Keywords
ERROR real-valued function

IOSTAT real-valued function

REACTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 208

ESTOP program instruction

ESTOP program instruction

Syntax
ESTOP

Function

Assert the emergency-stop signal to stop the robot.

Details

This instruction immediately asserts the controller emergency-stop signal and then proceeds
with a normal power-down sequence. It is functionally identical to pressing the E-STOP
button on the pendant or Front Panel .

Related Keywords
BRAKE program instruction
ESTOP monitor command
PANIC monitor command
PANIC program instruction

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 209

EXECUTE program instruction

EXECUTE program instruction

Syntax

EXECUTE /C task_num program(param_list), cycles, step

Function

Begin execution of a control program.

Usage Considerations

A program cannot already be active as the specified program task.

Parameters

/C Optional qualifier that conditionally attaches the selected robot.
The qualifier has an effect only when starting the execution of task
0.

task_num Real value or expression specifying which program task is to be
activated. (For more information on program tasks, see the section
Executing Programs in the eV+ Language User's Guide.)

program Name of the program to be executed.

param_list Optional list of constants, variables, or expressions separated by
commas, that must correspond in type and number to the
arguments in the .PROGRAM statement for the program specified.
If no arguments are required by the program, the list is blank, but
the parentheses must be entered.

Program parameters may be omitted as desired, using commas to
skip omitted parameters. No commas are required if parameters
are omitted at the end of the list. Omitted parameters are passed
to the called program as undefined and can be detected with the
DEFINED real-valued function.

Automatic variables (and subroutine arguments) cannot be passed
by reference in an EXECUTE instruction. They must be passed by
value (see the description of CALL).

The parameters are evaluated in the context of the new task that
is started (see below).

cycles Optional real value, variable, or expression (interpreted as an

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 210

EXECUTE program instruction

integer) that specifies the number of program execution cycles to
be performed. If omitted, the cycle count is assumedto be 1. For
unlimited cycles, specify any negative value. The maximum loop
count value allowed is 32,767.

step Optional real value, variable, or expression (interpreted as an
integer) that specifies the step at which program execution is to
begin. If omitted, program execution begins at the first executable
statement in the program (that is, after the initial blank and
comment lines and all the AUTO and LOCAL instructions).

Details

This command initiates execution of the specified control program. The program is executed
cycles times, starting at the specified program step.

After a program initiates execution of another program, the initiating program can use the
STATUS and ERROR real-valued functions to monitor the status of the other program.

The optional /C qualifier has an effect only when starting execution of task 0. When /Cis not
specified, an EXECUTE instruction for task 0 fails if the robot cannot be attached; attachment
requires that the robot be calibrated and that arm power be enabled (or that the DRY.RUN
switch is enabled). When /C is specified, an execute instruction for task 0 attempts to attach
the robot, but allows execution of task 0 to continue without any indication of error if the
robot cannot be attached.

Certain default conditions are assumed whenever program execution is initiated. They are
equivalent to the following program instructions:

CPON ALWAYS

DURATION 0 ALWAYS
FINE 100 ALWAYS

LOCK 0

MULTIPLE ALWAYS

NULL ALWAYS

OVERLAP ALWAYS

SPEED 100,100 ALWAYS
SELECT ROBOT = 1

Also, the robot configuration is saved for subsequent motions.

An execution cycle is terminated when a STOP instruction is executed, a RETURN instruction
is executed in the top-level program, or the last defined step of the program is encountered.
The value of cycles can range from -32,768 to 32,767. The program is executed one time if
cycles is omitted or has the value 0 or 1. Any negative value for cycles causes the program to
be executed continuously until a HALT instruction is executed, an error occurs, or you (or
another program) aborts execution of the program.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 211

EXECUTE program instruction

NOTE: Each time an execution cycle is initiated, the execution parameters are reset to
their default values. This includes motion speed, robot configuration, and servo modes.
However, the robot currently selected is not changed.

If step is specified, the program begins execution at that step for the first pass. Successive
cycles always begin at the first executable step of the program.

All the instruction parameters are evaluated in the context of the new task that is started.
This can lead to unexpected results when the EXECUTE program instruction is used, and an
attempt is made to pass a task-dependent value (for example, the TASK real-valued
function). In such a case, if you want the task-dependent value to reflect the invoking task,
you must assign the task-dependent value to a variable and pass that variable.

Examples

Initiate execution (as task #0) of the program named assembly, with execution to continue
indefinitely (that is, until execution is aborted, a HALT instruction is executed, or a run-time
error occurs):

EXECUTE 0 assembly, -1

Initiate execution, with program task #2, of the program named test. The parameter values
1 and 2 are passed to the program.

EXECUTE 2 test(1,2)

The following program segment shows how an application program can be initiated from
another application program (the ABORT and CYCLE.END program instructions are used to
make sure the specified program task is not already active):

ABORT 3 ;Abort any program already active
CYCLE.END 3 ;Wait for execution to abort
EXECUTE 3 new.program ;Start up the new program

Related Keywords
ABORT monitor command
ABORT program instruction
CALL program instruction
CYCLE.END monitor command
CYCLE.END program instruction
EXECUTE monitor command
KILL monitor command

KILL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 212

EXECUTE program instruction

PRIME monitor command
PROCEED monitor command
RETRY monitor command
SSTEP monitor command
STATUS monitor command
STATUS real-valued function

XSTEP monitorcommand

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 213

EXIT program instruction

EXIT program instruction

Syntax

EXIT count

Function

Branch to the statement following the nth nested loop of a control structure.

Usage Considerations

This instruction works with the FOR, WHILE, and DO control structures.

Parameter

count Optional integer value (expressions and variables are not acceptable)
specifying how many nested structures to exit. The default valueis 1.

Details

When an EXIT instruction is reached, the control structure is terminated and execution
continues at the first instruction following the outermost control structure exited.
Example

If input signal 1001 is set, exit one control structure; if 1002 is set, exit three control
structures:

27 FOR i = 1 TO 40

28 WHILE ctrl.var DO

29 DO

30 IF SIG(1002) THEN

31 EXIT 3 ; Jump to step 40
32 END

33 IF SIG(1001) THEN

34 EXIT ; Jump to step 37
35 END

36 UNTIL FALSE

37 count = count+l

38 END

39 END

Related Keywords
DO program instruction
FOR program instruction

NEXT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 214

EXIT program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 215

FALSE real-valued function

FALSE real-valued function

Syntax
FALSE

Function

Return the value used by eV+ to represent a logical false result.

Usage Considerations

The word "false" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where true and false conditions need to be
specified. The value returned is zero.

Example

The following program loop will execute continuously until the subroutine cycle returns a
FALSE value for the real variable continue:

DO
CALL cycle(continue)
UNTIL continue == FALSE

Related Keywords
OFF real-valued function

TRUE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 216

FCLOSE program instruction

FCLOSE program instruction

Syntax
FCLOSE (logical_unit)

Function

Close the disk file, graphics window, or graphics icon currently open on the specified logical
unit.

Usage Considerations

No error is generated if a file or graphics window is not open on the logical unit, although the
IOSTAT real-valued function returns an error code.

When a graphics window is closed, the window is not deleted from graphics memory and its
stacking and display status are not changed.

Parameter

logical_unit Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction
for a description of logical unit numbers.)

Details

After a program has finished accessing a file that has been opened via an FOPEN instruction,
the program must close the file by executing an FCLOSE instruction. FCLOSE frees the file
for access by the eV+ monitor and other programs. In addition, for files that have been
opened for writing, FCLOSE writes out any data still buffered by eV+ and updates the file
directory information. Thus, if this operation is not performed, the disk file may not actually
contain all of the information written to it.

If a program is finished accessing a graphics window, or needs to reuse its logical unit
number, the window can be closed with this instruction. After a window is closed, it can be
deleted with an FDELETE instruction or it can be opened again later with an FOPEN
instruction.

NOTE: Reopening a window resets all its text and graphics attributes (for example, color,
font ID, character path and orientation, texture, logical operation, and enabled events),
which must be explicitly reset by the program before attempting output to the window.

An FCLOSE operation is automatically performed on a logical unit when the unit is detached,
when the program that issued the FOPEN completes execution, or when a KILL of the
program task is performed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 217

FCLOSE program instruction

The IOSTAT real-valued function should be used to check for successful completion of a close
operation. (The error code for File not opened will be returned if there was no file or window
currently open on the specified logical unit.)

Related Keywords

ATTACH program instruction

DETACH program instruction

FOPEN program instruction

FOPENR program instruction

IOSTAT real-valued function

KILL monitor command

KILL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 218

FCMND program instruction

FCMND program instruction

Syntax

FCMND (logical_unit, command_code) $out_string, $in_string

Function

Generate a device-specific command to the input/output device specified by the logical unit.

Usage Considerations
The logical unit referenced must have been previously attached.

As appropriate, the current default device, unit, and directory path are considered for any
disk file specification (see the DEFAULT command).

Parameters
logical_unit Real-valued expression that identifies the device to be
accessed. (See the ATTACH instruction for a description of
logical unit numbers.)
command_code Real-valued expression that specifies the command to be
executed. (See the explanation of command codes below.)
$out_string String constant, variable, or expression that is transmitted
to the device along with the command code to specify the
operation to be performed.
$in_string Optional string variable. This variable receives any
information returned from the device as a result of the
command.
Details

This instruction allows a program to generate device-specific command sequences. For
example, this instruction can be used to send a command to the disk to delete a file or to
rename a file. Since these are maintenance operations, which are not generally performed
by eV+ programs, no special-purpose eV+ program instructions exist for performing these
operations.

Any error in the specification of this instruction (such as attempting to access an invalid unit)
will cause a program error and will halt program execution. However, errors associated with
performing the actual operations (such as device not ready) do not halt program execution
since these errors can occur in the normal operation of a program. These normal errors can

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 219

FCMND program instruction

be detected by using the IOSTAT function after performing the FCMND. In general, it is good
practice always to test whether each FCMND operation completed successfully using IOSTAT.

File Command Codes

With the exception of the CLOSE command, a file cannot be open on the logical unit when the
FCMND is executed.

6 Rename a file. The $out_string parameter must contain the new name
of the file (including any required disk unit and directory path
specification). The $in_string variable must contain the old file name.

7 Compress the disk. This command is invalid for local disks.

8 Format the disk. The $out_string parameter must contain the name of
the disk unit to format, followed by any required qualifiers. The data
contained in $out_string must be identical to that of the argument list of
a FORMAT monitor command. On completion, the $in_string variable
will contain text indicating how many bad blocks were located.

CAUTION: Formatting a disk erases all the information on the disk.

14 Create a subdirectory. The $out_string parameter must contain the
specification of the subdirectory, including an optional unit name if the
current default disk unit is not to be accessed. (Refer to the eV+
Operating System User's Guide for a description of subdirectory
specifications.)

NOTE: Only the final subdirectory in the specified directory path is
created by this operation. That is, all the intermediate subdirectories
must already exist, and they are not created.

15 Delete a subdirectory. The $out_string parameter must contain the
specification of the subdirectory, including an optional unit name if the
current default disk unit is not to be accessed. (Refer to the eV+
Operating System User's Guide for a description of subdirectory
specifications.)

NOTE: Only the final subdirectory in the specified directory path is
deleted by this operation. That is, all the intermediate subdirectories
must already exist, and they are not deleted.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 220

FCMND program instruction

19

20

21

Assert the creation date/time for the file currently open on the specified
logical unit. This command can be issued at any time a disk file is
opened. Once asserted, when the file is closed, the file's creation date
and time are set equal to the specified values rather than the current
date and time. Also, if this command is issued when the file is closed,
eV+ does not automatically assert the not archived bit. The input string
must contain date and time, where:

date is a 16-bit integer word representing the date in the standard
compressed format used by the TIME and $TIME functions.

time is a 16-bit integer word representing the time in the standard
compressed format.

This command code applies only to local disk drives.

Return the number of unused and total number of KB on a local disk.
The returned string is in the form uuuuu/ttttt where uuuuu is the
number of unused KB and ttttt is the total number of KB. A file must be
open on the drive (with prereads disabled). The open file identifies the
disk unit.

Read the creation date/time for the file currently open on the specified
logical unit. This command can be issued any time after a file has been
opened. Normally, this command returns the values that are read from
the disk directory at the time the file was opened. However, if an

FCMND 19 instruction has been issued to assert file creation date and
time, FCMND 21 returns the value set by FCMND 19. The string
returned by this command contains date and time (use INTB to extract
the values), where

date is a 16-bit integer word representing the date in the standard
compressed format used by the TIME and $TIME functions.

time is a 16-bit integer word representing the time in the standard
compressed format.

This command code applies only to local disk drives.

Serial Line Command Codes

102

Clear the type-ahead buffer for a serial line, or clear the event queue for
a graphics window. This command, which is recognized only by the
serial communication lines and the graphics logical units, does not
process any arguments.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 221

FCMND program instruction

106

Read modem control flags. Modem control flags are returned in the first
byte of a one-byte string. Bits within that byte show the current state of
the modem control lines for the serial port attached to the lun specified
in the FCMND instruction. The bits are interpreted as follows (LSB is 1):

Bit Mask State of:
1 ~HO1 Request to Send (RTS)
2 AHO02 Data Terminal Ready
(DTR)
5 AH10 Input Clear to Send (CTS)
6 AH20 Input Data Carrier Detect
(DCD)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 222

FCMND program instruction

DDCMP Command Codes

500

Return information about DDCMP status. (This FCMND is present in all
eV+ systems that support DDCMP.) The FCMND reply string may be
parsed using INTB and LNGB functions to extract the binary data, as
described in the following code. When the instruction

FCMND (lun,500) ™, $reply

is executed, the string variable $reply receives packed binary data
regarding the DDCMP line attached on the specified logical unit. Then
the functions shown in the following table can be used to extract the
data.

DDCMP Status Format

Function Notes
INTB($reply,1) 0 = Lineis closed
DDCMP network state 1 = Line is open but
(0,1,0r2) .

waiting for remote
2 = Lineis active
INTB($reply,3) Not used
LNGB($reply,5) Local media error count
LNGB($reply,9) Local timing error count
LNGB($reply,13) Local format error count
LNGB($reply,17) Remote media error
count
LNGB($reply,21) Remote timing error
count
LNGB($reply,25) Remote format error
count
LNGB($reply,29) Count of blocks sent
LNGB($reply,33) Count of blocks received

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 223

FCMND program instruction

501

Set DDCMP communication parameters. This command is recognized
only by serial communication lines configured for use with the DDCMP
protocol. See the eV+ Language User's Guide for the details of this
command.

TCP Command Codes

600

601

Initiate a close connection from the TCP server side for the client
identified by the handle number handle in the instruction FCMND (lun,
600) $INTB(handle). Note, however, that close-connection requests are
more commonly initiated by the client side.

Initiate a PING command (see the eV+ Operating System Reference
Guide for details on the PING monitor command). The resulting IOSTAT
value is either 1, indicating the client was found on the network, or -
562, indicating a network timeout.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 224

FCMND program instruction

DeviceNet Command Codes

761 Used for reading CanBus status. The CanBus is the bus that DeviceNet
runs on. When the instruction

FCMND (lun,761) "", S$input

is executed, the string variable $input returns the status shown in the
following table.

DeviceNet Status Format

Function Notes
INTB($input, 1) CanBus status value (see
below)
INTB($input, 3) Number of bytes

transmitted

INTB($input, 5) Number of acknowledges
received

INTB($input, 7) Number of bytes received

INTB($input, 9) Number of errors

INTB($input, 11) Number of bytes lost

INTB($input, 13) Number of overruns

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 225

FCMND program instruction

CanBus status value is a bitmask containing the following bits:

Bit Meaning When Bit is Nonzero
1 Online
2 Bus warning
3 Bus off
4 Activity detected
5 (reserved)
6 Transmit timeout
7 Receive buffer overrun
8 (reserved)
9 (reserved)
10 (reserved)
11 (reserved)
12 (reserved)
13 Online at 125 KBaud
14 Online at 250 KBaud
15 Online at 500 KBaud
16 Scanner active

76- Used for generic I/O to the DeviceNet scanner. This FCMND reads from the
2 scanner input area. When the instruction

FCMND (lun, 762) S$SINTB(macid)+S$SINTB(offset)+S$SINTB
(count), S$input

is executed, macid> is the MAC ID to read from, offset is the read offset into

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 226

FCMND program instruction

76-

76-

76-

the input area (it is device-dependent), and count is the number of bytes to
read. The input is returned by the string variable $input. See the MV Controller
User's Guide for details on the MACID statement in DeviceNet configuration.

Used for generic I/0 to the DeviceNet scanner. This FCMND writes to the
scanner output area. When the instruction

FCMND (lun, 763) S$SINTB(macid)+S$SINTB (offset)+SINTB
(count) +Soutput

is executed, macid is the MAC ID to write to, offset is the write offset into the
output area (it is device-dependent), and count is the number of bytes to
write. The output bytes are contained in the string variable $output. See the
MV Controller User's Guide for details on the MACID statement in DeviceNet
configuration.

This command code provides the same support as command 761 except that it
returns a 32-bit counter instead of a 16-bit counter. If FCMND 764 is used for
an AWC controller, a 32-bit counter is returned, but the counter still rolls over
at 16 bits. The syntax for this command is as follows:

FCMND (lun, 764) "", S$input

This is used for reading the CanBus status. The CanBus is the bus upon which
DeviceNet runs. The status is returned in $input.

Used for determining the DeviceNet status with the following eV+ code:
AUTO lun, macid, status, S$error([25], S$input

macid = 1 ;MacID for this
example

; Define the status messages.

Serror[0] = "Device not in device list"

Serror[1] = "Device idle (not being scanned)"

Serror[2] = "Device being scanned"

Serror[3] = "Device timed-out"

Serror[4] = "UCMM connection error"

Serror[5] = "Master/Slave connection set is busy"

Serror[6] = "Error allocating Master/Slave connection
set"

Serror[7] = "Invalid vendor id"

Serror[8] = "Error reading vendor id"

Serror[9] = "Invalid device type"

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 227

FCMND program instruction

Serror[10] =
Serror[11l] =
Serror[1l2] =
Serror[13] =
Serror[14] =

Serror[15]
Serror[16]
connection 1"
Serror[17]
Serror[18]

Serror[19]
Serror[20]
connection 2"
Serror[21]
connection 1"
Serror[22]
connection 2"
Serror[23]

; Report the

ATTACH (lun,

IF IOSTAT (lun)

"Error reading device type"

"Invalid product code"

"Error reading product code"

"Invalid I/0 input size for connection 1"
"Error reading I/O input size for connection

"Invalid I/0O output size for connection 1"
"Error reading I/O output size for

"Invalid I/O input size for connection 2"
"Error reading I/O input size for connection

"Invalid I/0O output size for connection 2"
"Error reading I/O output size for

"Error setting I/O packet rate for
"Error setting I/O packet rate for
"M/S connection set sync fault"
status of DeviceNet.

4)

"DEVICENET" ;Attach the device

< 0 GOTO 100

FCMND (lun, 760) S$INTB(macid), $input ;Get the status
IF IOSTAT (lun) < 0 THEN
TYPE "No node with MacId", macid
ELSE
status = ASC ($input)
TYPE "MacID", macid, " status: ", Serror[status]
END
DETACH (lun) ;Release the
device
Examples

Return modem control bit flags for the serial port attached to logical unit 10:

FCMND
flags

(10,106), Stemp
ASC ($temp)

Format the disk loaded in drive A in double-sided, double-density format and return the string
containing the bad-block count in $bad:

FCMND (5, 8) "A:/Q", S$bad

Specifya DDCMP time-out interval of 2 seconds, with maximums of 20 time-outs and 8 NAK
retries.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 228

FCOPY program instruction

FCMND (lun, 501) $CHR(2)+$CHR(20)+$CHR(8)

Check to see if a client is on the network.

FCMND (lun, 601) "node address", S$str

Related Keywords

ATTACH program instruction

DETACH program instruction

FDELETE monitor command

FDELETE program instruction

FDIRECTORY monitor command

FOPEN program instruction

FRENAME monitor command

IOSTAT real-valued function

MCS program instruction

FCOPY program instruction

Syntax

FCOPY err, $new_file = $old_file

Function

Copy the information in an existing disk file to a new disk file.

Parameters

err

$new_file

$old_file

Optional parameter, used to return an error.

String constant, variable, or expression that specifies the file for the
new disk file to be created. If the period (".") and filename extension
are omitted, the default is a blank extension. The current default
device, unit, and directory path are considered as appropriate (see

the DEFAULT command).

String constant, variable, or expression that specifies an existing
disk file. If the period (".") and filename extension are omitted, the
default is a blank extension. The current default device, unit, and
directory path are considered as appropriate.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 229

FCOPY program instruction

Details

If the new file already exists, or the old file does not exist, an error is reported and no copying
takes place. (You cannot overwrite an existing file-the existing file must first be deleted with
an FDELETE command.)

If the file to be copied has the special "read-only" attribute, the new file will also have that
attribute. Files with the "protected" attribute cannot be copied. (See FDIRECTORY for a
description of file protection attributes.) When a file is copied, the file creation date and time
are preserved along with the standard file attributes. The only attribute that is affected is the
"archived" bit, which is cleared to indicate that the file is not archived.

In general, a file specification consists of six elements:
1. An optional physical device (for example, DISK>)
2. An optional disk unit (for example, D:)

An optional directory path (for example, DEMO\)

A file name (for example, NEWFILE)

u W

A period character (".")
6. Afile extension (for example, V2)
FCOPY can also be used to write a file to a serial line:

FCOPY SERIAL:n>="myfile" ;Global serial line "n"

Example

Create a file named "newfile.v2" on disk device "D" that is an exact copy of the existing file
named "oldfile.v2" on disk device "D":

FCOPY "D:\newfile.v2" = "D:\oldfile.v2"

Related Keywords
FCOPY monitor command
DEFAULT monitor command

FRENAME monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 230

FDELETE program instruction

FDELETE program instruction

Syntax

FDELETE (logical_unit) object

Function

Delete the specified disk file, the specified graphics window and all its child windows, or the
specified graphics icon.

Usage Considerations

The logical unit number must be attached, but no file or window can be currently open on
that logical unit.

The window cannot be deleted if it (or any of its child windows) is open as any other logical
unit or by any other program task.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer) that
corresponds to a disk or window logical unit. (See the ATTACH
instruction for a description of logical unit numbers.)

object String constant, variable, or expression specifying the disk file,
graphics window, or graphics icon to delete. The error
Nonexistent file will be reported (via IOSTAT) if the specified
object does not exist.

For disk files, the string may contain an optional disk unit and an
optional directory path, and must contain a file name, a period (.),
and a file extension. The current default disk unit and directory
path are considered as appropriate (see the DEFAULT command).

For graphics windows, the string must fully specify the position in
the window tree of the window to be deleted.

For graphics icons, the string must specify the name of the icon,
followed by /ICON.

Details

If a disk logical unit number is specified, the object parameter is interpreted as the
specification of a disk file to be deleted. If the deletion fails for any reason (for example, the
file does not exist or the disk is protected), an error will be returned via the IOSTAT real-
valued function.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 231

FDELETE program instruction

NOTE: In order to delete a file from a 3.5 inch diskette, the write-protect slider must be in
the position that covers the hole.

If the logical unit number specified is for a graphics window, the object parameter is
interpreted as the specification of a graphics window or icon to be deleted. When a window is
specified, that window and all of its child windows are deleted. If any of the window's children
cannot be deleted, the specified window is not affected and an error is returned (via the
IOSTAT real-valued function). When a window is deleted, it is erased from the display. (A
window must be FCLOSEd before it can be FDELETEd.)

When a graphics logical unit is accessed, a *Protection error* message is reported (via
IOSTAT) if a system window or icon is specified.

Examples

Delete the disk file defined by the file specification in the string variable $file:

FDELETE (5) $file

Delete the top-level window named TEST and all of its child windows. The logical unit defined
by main must be a graphics logical unit:

FDELETE (main) "TEST"

Delete the graphics window named ERROR, which is a child of the top-level window named
VISION:

FDELETE (21) "VISION\ERROR"

Delete the graphics icon named BUTTON:

FDELETE (20) "BUTTON/ICON"

Related Keywords
ATTACH program instruction
FCLOSE program instruction
FDELETE program instruction
FOPEN program instruction

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 232

FEMPTY program instruction

FEMPTY program instruction

Syntax

FEMPTY (logical_unit)

Function

Empty any internal buffers in use for a disk file or a graphics window by writing the buffers to
the file or window if necessary.

Usage Considerations

When accessing a file, the file must be open for random access on the specified logical unit
(see the FOPEN_ instructions).

When accessing a graphics window, this instruction is useful only for a window that is opened
in buffered mode. (That is, the /BUFFERED attribute was specified in the FOPEN instruction
that opened the window.)

Parameter
logical_unit Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction
for a description of logical unit numbers.)
Details

During random-access I/0 of a disk file, eV+ writes data to the disk in blocks of 512 bytes
(characters). For efficiency, when a record with a length of less than 512 bytes is written
using a WRITE instruction, that data is stored in an internal buffer and might not actually be
written to the disk until a later time.

When a disk logical unit is referenced, the FEMPTY instruction directs eV+ to write its internal
buffer contents immediately to the disk file. That is useful, for example, in applications where
data integrity is especially critical (see FOPEN for details on defeating buffering).

When a window logical unit is referenced, the FEMPTY instruction forces all buffered graphics
output to be immediately written to the window.

The IOSTAT real-valued function can be used to determine if any error results from an
FEMPTY operation.

Examples

Empty the internal output buffer for logical unit 5 and write it to the disk immediately:

FEMPTY (5)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 233

FEMPTY program instruction

Empty the internal buffer for graphics logical unit 20 by writing it to the window immediately:

FEMPTY (20)

Related Keywords
ATTACH program instruction
FOPEN program instruction
FOPEN_ program instruction
IOSTAT real-valued function

WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 234

FINE program instruction

FINE program instruction

Syntax

FINE tolerance ALWAYS

Function

Enable a high-precision feature of the robot hardware servo.

Usage Considerations
Only the next robot motion will be affected if the ALWAYS parameter is not specified.

If the tolerance parameter is specified, its value becomes the default for any subsequent
FINE instruction executed during the current execution cycle (regardless of whether
ALWAYS is specified).

This is the default state of the eV+ system. FINE 100 ALWAYS is assumed whenever
program execution is initiated and when a new execution cycle begins.

The FINE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the FINE instruction causes
an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the percentage
of the standard fine tolerances that are used for each joint of the robot
attached by the current execution task.

ALWAYS Optional qualifier that establishes FINE as the default condition. That is,
FINE will remain in effect continuously until disabled by a COARSE
instruction. If ALWAYS is not specified, the FINE instruction will apply
only to the next robot motion.

Details

Enables the high-precision feature in the robot motion servo system so that only small errors
in the final positions of the robot joints are permitted at the ends of motions. This produces
high-accuracy motions but increases cycle times since the settling time at the end of each
motion is increased.

If the tolerance parameter is specified, the new setting takes effect at the start of the next
motion. Also, the value becomes the default for any subsequent FINE instruction executed

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 235

FINE program instruction

during the current execution cycle (regardless of whether or not ALWAYS is specified).
Changing the FINE tolerance does not affect the COARSE tolerance.

If the tolerance parameter is omitted, the most recent setting (for the attached robot) is
used. The default setting is restored to 100 percent when program execution begins, or a
new execution cycle starts (assuming that the robot is attached to the program).

Examples

Enable the high-precision feature only for the next motion:

FINE

Enable the high-tolerance feature for the next motion, with the tolerance settings changed
to 50% of the standard tolerance for each joint (that is, a tighter tolerance):

FINE 50

Enable the high-tolerance feature until it is explicitly disabled:

FINE ALWAYS

Related Keywords

COARSE program instruction
CONFIG real-valued function
DELAY.IN.TOL program instruction
NONULL program instruction
NULL program instruction

SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 236

FLIP program instruction

FLIP program instruction

Syntax
FLIP

Function

Request a change in the robot configuration during the next motion so that the pitch angle
of the robot wrist has a negative value.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a flip configuration, this instruction is ignored by the
robot.

The FLIP instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the FLIP instruction causes
an error.

Details

Asserting a FLIP configuration forces the wrist joint to have a negative rotation (top robot in
FLIP/NOFLIP). Asserting a NOFLIP configuration forces a wrist joint to have a positive
rotation (bottom robot in FLIP/NOFLIP). Wrist joint angles are expressed as £180°.

NOTE: Robots can change configuration only during joint-interpolated moves.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 237

FLIP program instruction

FLIP/NOFLIP

The following figures illustrate FLIP versus NOFLIP configurations of a Viper 650 robot.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 238

FLIP program instruction

FLIP/ NOFLIP Example on Viper 650 Robot

Example

The following eV+ code snippet demonstrates the use of the FLIP and NOFLIP program
instructions:

FLIP ;Request change in robot configuration during next
motion

MOVE loc_a ;Move to loc_a transformation with FLIP
configuration

NOFLIP ;Request change in robot configuration during next
motion

MOVE loc_a ;Move to loc a transformation with NOFLIP

configuration

Related Keywords

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 239

FLIP program instruction

NOFLIP program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 240

FLTB real-valued function

FLTB real-valued function

Syntax
FLTB ($string, first_char)

Function

Return the value of four bytes of a string interpreted as an IEEE single-precision floating-
point number.

Parameters

$string String expression that contains the four bytes to be converted.

first_char Optional real-valued expression that specifies the position of the
first of the four bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first four
bytes of the string are extracted. If first_char is greater than 1,
it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second, third, fourth, and
fifth bytes are extracted. An error is generated if first_char
specifies four bytes that are beyond the end of the input string.

Details

Four sequential bytes of the given string are interpreted as being a single-precision (32-bit)
floating-point number in the IEEE standard format. This 32-bit field is interpreted as follows:

31 30 23 22 0

s exp fracton

1st Byte 2nd Byte 3rd Byte 4th Byte

where
s is the sign bit, s = 0 for positive, s = 1 for negative.
exp is the binary exponent, biased by -127.

fraction is a binary fraction with an implied 1 to the left of the binary point.

For 0 < exp < 255, the value of a floating-point number is:

-1% * (1.fraction) * 28xp -127

For exp = 0, the value is zero; for exp = 255, an overflow error exists.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 241

FLTB real-valued function

The main use of this function is to convert a binary floating-point number from an input data

record to a value that can be used internally by eV+.

Examples

FLTB (SCHR ("H3F)+$CHR ("H80) +SCHR (0) +SCHR (0))
FLTB (SCHR ("HCO) +$CHR ("H40) +$SCHR (0) +SCHR (0))

Related Keywords

ASC real-valued function

DBLB real-valued function
$DBLB string function

$FLTB string function

INTB real-valued function

LNGB real-valued function
$LNGB string function

TRANSB transformation function

VAL real-valued function

;Returns 1.0
;Returns -3.0

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 242

$FLTB string function

$FLTB string function

Syntax
$FLTB (value)

Function

Return a 4-byte string containing the binary representation of a real value in single-precision
IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its IEEE
floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE single-precision
standard floating-point format. This 32-bit value is packed as four successive 8-bit characters
in a string. See the FLTB real-valued function for a more detailed description of IEEE floating-
point format.

The main use of this function is to convert a real value to its binary representation in an
output record of a data file.

Example

SFLTB(1.215)
;Returns a character string equivalent to:
SCHR ("H3F) +$SCHR ("H9B) +SCHR ("H85) +$SCHR ("H1F)

Related Keywords
$CHR string function
DBLB real-valued function
$DBLB string function
FLTB real-valued function
$INTB string function
LNGB real-valued function
$LNGB string function
$TRANSB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 243

FOPEN program instruction

FOPEN program instruction

Syntax
FOPEN (logical_unit, mode) attribute_list

Function

Create and open a new graphics window or TCP connection, or open an existing graphics
window for subsequent input or output.

Open a graphics icon for definition.

Usage Considerations

The logical unit must be attached before an open operation will succeed.

Parameters
logical_unit Real value, variable, or expression (interpreted as an integer) that
defines the logical unit number assigned to the window or TCP
device. (See the ATTACH instruction for a description of unit
numbers.)
mode Optional expression that applies only to TCP logical units and

selects the type of TCP connection:
0 = Client mode, 16 = Server mode.

attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to assign a
name to the window and to define some of the characteristics of
the window.

When opening a TCP connection in server mode, this string
defines the characteristics of the server. When opening a
connection in client mode, the string defines the name of the
server in addition to characteristics of the connection.

The attribute list (which is processed like an output specification
for the TYPE instruction) is used to compose a single string that is
passed to the window manager or TCP driver. The string must
begin with the name of the window and can optionally contain
keyword attributes that define characteristics of the window. The
string must not exceed 512 characters.

NOTE: An eV+ string literal or string variable cannot exceed

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 244

FOPEN program instruction

128 characters. In order to create an attribute list longer than
128 characters you must concatenate multiple strings.

The attribute list can consist of one or more components
separated by commas. Each component can be expressed in any
of the following ways:

1. Astring constant, variable, or expression.

2. Areal-valued constant, variable, or expression, which is
evaluated to determine a value to be used in the control
string.

3. Aformat-control specifier, which determines the format of
information in the control string.

Details

Using FOPEN With TCP

A TCP/IP connection can be opened in either server mode or client mode. In server mode, one
or more clients (depending on the value assigned to /CLIENTS) are allowed to connect to the
server for subsequent communication.

To establish a client-server connection, the client must know the port number for the server.
For this reason, when using the FOPEN instruction for opening a server connection, the port
is explicitly defined using the /LOCAL_PORT attribute. Note that the server does not need to
know the port number used by the client.

Port numbers 0 through 255 are used by standard TCP application packages. For example,
FTP uses ports 20 and 21. By convention, if you are writing your own custom protocol, use a
port number greater than 255.

The following table shows valid TCP attributes for the FOPEN instruction.
FOPEN TCP Attributes

Attribute: /CLIENTS

Explanation: Defines the number of client connections
allowable on a server. If omitted, a single client
connection is assumed. The maximum number
of client connectionsis 31.

Attribute: /LOCAL_PORT

Explanation: Defines the local port number for the connection.
If omitted, a local port number is automatically

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 245

FOPEN program instruction

assigned.
Attribute: /REMOTE_PORT
Explanation: Defines the port number of a server to which a

client connection is to be made. This must be
provided when establishing a client connection.

Examples
Set up a TCP server with local port #260 to accept 5 client connections:

FOPEN (lun, 16) "/LOCAL PORT 260 /CLIENTS 5"

Set up a TCP client connection that connects to port number 260 on the server called
serverl:

FOPEN (lun, 0) "serverl /REMOTE PORT 260"

Related Keywords
ATTACH program instruction
DETACH program instruction
FCLOSE program instruction
FDELETE program instruction
FEMPTY program instruction
FSET program instruction

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 246

FOPEN_ program instruction

FOPEN_ program instruction

Syntax

FOPEN_ (lun, record_len, mode) file_spec

Function

Open a disk file for read-only, read-write, read-write-append, or read-directory, as indicated
by the last letter of the instruction name.

The forms of FOPEN__ are:
. FOPENA
. FOPEND
. FOPENR
. FOPENW

See the Details section for descriptions of each instruction.

Usage Considerations
A logical unit must be attached before an open operation will succeed.

No more than 60 disk files and 160 network files can be open by the entire system at any
time. That includes files opened by all of the program tasks and by the system monitor (for
example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of the disk
device to be accessed. (See the ATTACH instruction for a description
of unit numbers.)

record_len Optional real-valued expression defining the length of records to be
read and written.

If the record length is omitted or is zero, variable-length records are
processed. In this case, random access of records cannot be done.

If the record length is nonzero, it specifies the length (in characters)
of fixed-length records to be processed. Random access is allowed
with fixed-length records.

mode Optional real-valued expression defining how read access is to be
done. The value specified is interpreted as a sequence of bit flags as

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 247

FOPEN_ program instruction

detailed below. (All bits are assumed to be clear if no mode value is
specified.)

Bit 1 (LSB) Disable prereads (mask value = 1)

If this bit is clear, eV+ will read a record as soon as the file is opened
(a preread) and after each READ instruction in anticipation of
subsequent READ requests. If this bit is set, no such prereads are
performed.

Bit 2 Enable random access (mask value = 2)

If this bit is clear, the file will be accessed sequentially. That is, records
are read or written in the order they occur in the file.

If this bit is set, the file is accessed using random access (which is
allowed only for disk files with fixed-length records). In random-
access mode, the record-number parameter in the READ or WRITE
instruction specifies which record is accessed.

Bit 4 Force disk write (mask value = 8)

If set for a disk file being opened for write access, the physical disk is
written every time a record is written. In addition, the directory or file
allocation information is updated with each write. This mode is
equivalent to (but faster than) closing the file after every write. It is
much slower than normal buffered mode, but it guarantees that
information that is written will not be lost due to a system crash or
power failure. This mode is intended primarily for use with log files
that are left opened over an extended period of time and
intermittently updated. For these types of files, the additional
(significant) overhead of this mode is not as important as the benefit.

file_spec String constant, variable, or expression specifying the file to be
opened. The string may contain an optional disk unit and an optional
directory path, and must contain a file name, a period (.), and a file
extension. (For FOPEND, the file name and extension are optional,
and both can contain wildcard characters-see below.)

The current default disk unit and directory path are considered as
appropriate (see Using Directories for additional information on disk
units and directory paths.)

Details

This instruction opens a disk file so that input/output (I/O) operations can be performed.
When the I/O operations are complete, the file should be closed using an FCLOSE or DETACH
instruction.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 248

FOPEN_ program instruction

FOPENA Opens a file for read-write-append access. If the specified file does not
already exist, the file is created.

If the file already exists, no error occurs, and the file position is set to
the end of the file. Write operations then append to the existing file.

FOPEND Opens a disk directory for reading. The file name and extension in the
file_spec parameter are used to prepare a file name template for use
when read operations are later performed. Those read operations
return only records from the disk directory file that match the file
name template. Any attempt to write to the directory file causes an
error. (For information on the format of directory records, see the
section Accessing the Disk Directories in the eV+ Language User's
Guide.)

The file name and extension can include wildcard characters
(asterisks, *). A wildcard character within a file name or extension
indicates that any character should be accepted in that position. A
wildcard character at the end of a file name or extension indicates
that any trailing characters are acceptable. A wildcard character in
place of a file name (or extension) indicates that any name (or
extension) is acceptable. Omission of the file name, the period, and
the file extension is equivalent to specifying *.*. Omission of the
period and file extension is equivalent to specifying a wildcard
extension.

FOPENR Opens a file for read-only access. If the file does not already exist, an
error occurs. Any attempt to write to the file causes an error.

FOPENW Opens a file for read-write access. If the file already exists, an error
occurs.

Any error in the specification of this instruction (such as attempting
to access an invalid unit) will cause a program error and will halt
program execution. However, errors associated with performing the
actual operations (such as device not ready) do not halt program
execution since these errors can occur in the normal operation of a
program. These normal errors can be detected by using the IOSTAT
function.

Example

FOPENR (5) "data.dat"

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 249

FOPEN_ program instruction

Open the file named data.dat on the default device for read-only access with variable-length
records (record length omitted). Since the mode parameter is omitted, prereads will occur
and the records will be accessed sequentially (which is required for variable-length records).

FOPENW (5, 32, 3) "D:x.d"

Open the file named x.d on the device D for read-write access using fixed-length records of 32
characters each. The mode value 3 has both bits 1 and 2 set; thus, prereads are to be
disabled and random access is to be used.

FOPEND (5) "*.dat"

Open the current default directory to find all the files with the extension DAT.

Related Keywords

ATTACH program instruction
DETACH program instruction
FCLOSE program instruction
FOPEN_ program instruction

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 250

FOR program instruction

FOR program instruction

Syntax
FOR loop_var = initial TO final STEP increment

Function

Execute a group of program instructions a certain number of times.

Usage Considerations

An END instruction must be included in a program to match every FOR.

Parameters

loop_var Real valued variable that is initialized when the FOR instruction is
executed and is incremented each time the loop is executed (cannot
be a specified value or expression).

initial Real value that determines the value of the loop variable the first time
the loop is executed.

final Real value that establishes the value to be compared to the loop
variable to determine when the loop should be terminated.

increment Optional real-value that establishes the value to be added to the loop
variable every time the loop is executed. If omitted, the increment
defaults to one, and the keyword STEP may also be omitted.

Details

The instructions between the FOR statement and the matching END statement are
executed repeatedly, and loop_var is changed each time by the value of increment.

The processing of this structure is as follows:
1. When the FOR statement is first entered, set loop_var to the initial value.
2. Determine the values of the increment and final parameters.
3. Compare the value of final to the value of loop_var:

« Ifincrement is positive and loop_var is greater than final, skip to item 7
below.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 251

FOR program instruction

. Ifincrement is negative and loop_var is less than (that is, more negative
than) final, skip to item 7 below.

Execute the group of instructions following the FOR statement.
When the END step is reached, add the value of increment to the loop variable.

Go back to item 3 above.

N o u A

Continue program execution at the first instruction after the END statement. loop_
var retains the value it had at the time of the test in item 3 above.

Note that the group of instructions in the FOR structure may not be executed at all if the test
in item 3 fails the first time.

The values of initial, increment, and final when the FOR statement is first executed
determine how many times the group of instructions are executed. Any changes to the
values of these parameters within the FOR loop have no effect on the processing of the FOR
structure.

Changes to the loop variable within the loop affect the operation of the loop and should
normally not be done.

NOTE: Ifinitial, final, or increment are not integer values, rounding in the floating point
computations may cause the loop to be executed more or fewer timer than expected.

Example
The following example sets all elements of a 10x10 array to O:

FOR 1 = 1 TO 10
FOR j = 1 TO 10
arrayl[i,j] = 0
END
END

Related Keywords
DO program instruction
EXIT program instruction
NEXT program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 252

FORCE._ program instruction

FORCE._ program instruction

Syntax
FORCE._

Function
Adept Intelligent Force Sensing option status and control instructions.

Stop on Digital Signal option control instruction.

Usage Considerations

The forms of FORCE._ areis:
FORCE.FRAME Set transformation for force reference frame
FORCE.MODE Set and control force operating modes
FORCE.OFFSET Set temporary or permanent force offset

FORCE.READ Return current force reading

Details

These instructions are part of the Omron Adept Intelligent Force Sensing System. See the
Adept Intelligent Force Sensing System User’s Guide for full syntax and details.

Stop on Digital Signal (eV+ 16.3 edit D and later)

A "stop-on-digital-signal" functionality is available. With this feature, any Omron Adept robot
system can be programmed to stop rapidly on a digital-input latch event. For example, this
feature could be used during high-speed assembly searches.

This feature, which operates like an AdeptForce (stop-on-force) guarded move, is enabled
and disabled with the program instructions "FORCE.MODE (2)" and "FORCE.MODE (-2)",
respectively. For more details on the Adept Intelligent Force Sensing System (stop-on-force)
Guarded move, see the Adept Intelligent Force Sensing System User's Guide.

To use this feature, do the following:

1. Using the ACE Controller Config Tools, change the TRAJ_RATE system parameter to
the value 250 Hz / 4 ms. This will increase the speed of response.

2. Using the ACE Controller Config Tools, add a poslatch clause to the robot statement.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 253

FORCE._ program instruction

For example, the clause "poslatch 1001" will cause a position latch to occur on the
leading edge of a change in input signal 1001. An example of this clause is shown in
the following code:

-

Edit Statement - robot objectid="1" [

Statement Type

robot
ltem Values
producttype cobra&00 v]
poslatch 1001 fmin -1999, max 1999 O O
safetyzonenumber 1 {min 1, mamx 32)

robot_option_2 @

Composed Statement

<robat objectid="1"> <producttype=cobrabll</producttype: <poslatch=1001</poslatch:
<safetyzonenumber:1</ safetyzonenumber: </robot:

Accept l ’ Cancel

L

3. InyoureV+ program, initiate stop-on-digital-signal using a FORCE.MODE (2) program
instruction. You can detect a stop by polling the LATCHED(1) function or the STATE(2)
function. You can disable stop-on-digital-signal with a FORCE.MODE(-2) program
instruction. An example of using the "stop-on-digital-signal" capability is shown below:

MOVE goal ;Start motion

FORCE.MODE (2) ;Enable "stop-on-digital-signal" mode
WAIT STATE (2) <> 1 ;Wait until the move terminates
FORCE.MODE (-2) ;Disable "stop-on-digital-signal"
mode

trigger = LATCHED(0) ;Determine if trigger occurred

After a "stop-on-digital-signal" occurs, the LATCHED() function returns the signal number
that triggered the latch (e.g. 1001) to indicate that the event had occurred, and the
transformation function LATCH() and the precision-point function #PLATCH() return the
position of the robot at the time of the event. The real-valued function STATE(2) can be used

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 254

FORCE._ program instruction

to determine the state of the stopped motion. STATE(2) has the value 10 after a stop-on-
digital-signal event has occurred.

The stop-on-digital-signal feature must be re-enabled with another FORCE.MODE(2)
instruction before another trigger can occur.

NOTE: The "stop-on-digital-signal" functionality requires the Enhanced Trajectory
Generator license, which must be purchased from Omron Adept and installed on the
controller.

Related Keywords

LATCH transformation function
LATCHED real-valued function
#PLATCH precision-point function
SELECT real-valued function

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 255

FRACT real-valued function

FRACT real-valued function

Syntax
FRACT (value)

Function

Return the fractional part of the argument.

Parameter
value Real-valued expression whose fractional part is returned by this function.
Details

The fractional part of a real value is the portion to the right of the decimal point (when the
value is written without the use of scientific notation).

The value returned has the same sign as the function argument.

Examples
FRACT (0.123) ;Returns 0.123
FRACT (-5.462) ;Returns -0.462
FRACT (1.3125E+2) ;Returns 0.25 (1.3125E+2 = 131.25)

Related Keyword

INT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 256

FRAME transformation function

FRAME transformation function

Syntax

FRAME (location_1, location_2, location_3, location_4)

Function

Return a transformation value defined by four positions.

Parameters
location_1 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the X axis of the
computed frame.
location_2 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the X axis of the
computed frame.
location_3 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the Y axis of the
computed frame.
location_4 Transformation, compound transformation, or a transformation-
valued function whose position is returned as the position of the
computed frame transformation.
Details

While the robot can be used to define an X, Y, Z position very accurately, it is often difficult to
define precisely an orientation. For applications such as palletizing, the FRAME function is
very useful for accurately defining a base transformation whose position and orientation are
determined by four positions. This function returns a transformation value that is computed
as follows:

1. Itsorigin is at the point defined by location_4.

2. Its positive X axis is parallel to the line passing through the points defined by
location_1 and location_2, in the direction from location_1to location_2.

3. Its X-Y plane is parallel to the plane that contains the points defined by location_1,
location_2, and location_3.

4. Its positive Y direction is from the computed X axes (as defined above), toward the
point defined by location_3.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 257

FRAME transformation function

Example

The following instruction defines the transformation base.frame to have the same X, Y, Z
position as origin, its X axis parallel to the line from center to x, and its Y axis approximately in

the same direction as the line from centertoy.

SET base.frame = FRAME (center, x, y, origin)

Related Keyword

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 258

FREE real-valued function

FREE real-valued function

Syntax

FREE (memory, select)

Function

Return the amount of unused free memory storage space.

Parameters

memory Optional real value, variable, or expression (interpreted as an integer) that
specifies which portion of system memory is to be examined, as shown
below. The value zero is assumed if the parameter is omitted.

memory Memory examined
0 Program memory
1 Obsolete
2 Obsolete
select Optional real value, variable, or expression (interpreted as an integer) that

specifies what information about the memory is to be returned, as shown
below. The value zero is assumed if the parameter is omitted.

select Information returned
0 Percentage of memory available
1 Available memory, in KB (1024 bytes)
2 Obsolete

NOTE: If both parameters are omitted, the parentheses must still be included.

Details

This function returns the information displayed by the FREE command. Unlike the FREE
command, however, this function returns only one value, determined by the values specified
for the memory and select parameters.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 259

FREE real-valued function

Related Keyword

FREE monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 260

FSEEK program instruction

FSEEK program instruction

Syntax

FSEEK (logical_unit, record_number)

Function

Position a file open for random access and initiate a read operation on the specified record.

Usage Considerations

A file must be open for random access on the specified logical unit (see the FOPEN_
instruction).

For efficiency in most applications, the file should be opened in no preread mode.

Parameters

logical_unit Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_number Optional real-valued expression that specifies the record to read
for file-oriented devices opened in random-access mode. If
omitted, the record following the one last read is assumed.

Details

When afile is open for random access, system performance can be improved by overlapping
the time required for disk file access with processing of the current data. By using the FSEEK
instruction, an application program can initiate a disk seek and possible read operation
immediately after a READ instruction is processed but before processing the data.

Any error in the specification of this instruction (such as referencing an invalid unit) causes a
program error and halts program execution. However, errors associated with performing the
actual seek operation (such as end of file or device not ready) do not halt program execution
since these errors may occur in the normal operation of a program. These normal errors can
be detected by using the IOSTAT function after performing the subsequent READ operation.
In general, it is good practice always to test whether each file operation completed
successfully by testing the value from IOSTAT.

Example

; Seek record number 130 in the file open on logical unit 5:
FSEEK (5, 130)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 261

FSEEK program instruction

Related Keywords
ATTACH program instruction
FOPEN program instruction
IOSTAT real-valued function

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 262

FSET program instruction

FSET program instruction

Syntax

FSET (logical_unit) attribute_list

Function

Set or modify attributes of a serial line or a network device.

Usage Considerations

If a window has been referenced, it must have been opened already with an FOPEN
instruction. If a serial line is referenced, it must have been attached already with an ATTACH
instruction.

The use of this instruction withnetwork devices applies only to systemswith the appropriate
license(s).

As with all eV+ I/0 instructions, the IOSTAT real-valued function should be used after each
FSET instruction to determine the success of the FSET request.

Parameters
logical_unit Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)
attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to define
the characteristics of the window. See the description of the
FOPEN instruction for detailed information on this parameter.
Details

Using FSET With Serial Lines
The following specifications can be used as arguments to directly ATTACH a serial line:

SERIAL:n
Local serial line n on the local controller

The keywords listed in the following table may appear in the keyword list string.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 263

FSET program instruction

FSET Serial-Line Attributes

1200, 2400, 4800,
7200,9600,
19200, 38400,
57600,115200

Attribute Argument Description
/PARITY NONE No parity generation
EVEN Use even parity
ODD Use odd parity
/STOP_BITS lor2 Use 1 or 2 stop bits per byte
/BYTE_LENGTH 7o0r8 Use 7 or 8 bits per byte
/FLOW NONE No flow control
XON_XOFF Detect and generate XON/XOFF (turn off
modem)
MODEM Use modem control RTS/CTS (turn off
XON_XOFF).
/SPEED 110, 300, 600, Select the indicated baud rate.

Using FSET With TCP
The following network devices may be referenced with the FSET> instruction:

TCP Transmission Control Protocol

You can use the attributes listed in the following table when accessing these devices with the

FSET instruction:

FSET Attributes for Networks

Attribute Description
/ADDRESS IP address. (Applies only to the TCP device.)
/NODE Node name.

You may define new nodes on the network using the FSET program instruction to access a

logical unit that has been attached to the TCP device. The string used with the FSET

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 264

FSET program instruction

instruction has the same format as that used with the NODE statement in the eV+
configuration file (see the later example).

Examples

Serial
The following example attaches serial line 2 and sets the baud rate to 38400:

ATTACH (slun, 4) "SERIAL:2"
FSET (slun) "/SPEED 38400"

Network
Define a new node called SERVER2 with the IP address 172.16.200.102:

ATTACH (lun, 4) "TCPp"

FSET (lun) "/NODE 'SERVER2' /ADDRESS '172.16.200.102"'"

Related Keywords
FOPEN program instruction

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 265

GETC real-valued function

GETC real-valued function

Syntax
GETC (lun, mode)

Function

Return the next character (byte) from a device or input record on the specified logical unit.

Usage Considerations

The logical unit must be attached by the program for normal, variable-length record
input/output.

Parameters

lun Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction for a
description of the unit numbers.)

mode Real value, variable, or expression (interpreted as an integer) that
specifies the mode of the read operation. Currently, the mode is used
only for the terminal and serial I/0 logical units. The value is interpreted
as a sequence of bit flags as detailed below. (All bits are assumed to be
clear if no mode value is specified.)

Bit 1 (LSB) Disable waiting for input (mask value = 1)

If this bit is clear, program execution is suspended until the next byte is
received. If the bit is set and no bytes are available, the function
immediately returns the error code for *No data received* (-526).

NOTE: A -526 error may be returned by the first no-wait GETC even
if there are bytes queued.
Bit 2 Disable echo (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the source.
If the bit is set, characters are not echoed back to the source. (This bit is
ignored for the serial lines.)

Details

The next byte from the device is returned. When reading from a record-oriented device such
as the system terminal or a disk file, the carriage-return and line-feed characters at the end

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 266

GETC real-valued function

of records are also returned. When the end of a disk file is reached, a Ctrl+Z character (26
decimal) is returned.

When reading from the terminal, GETC will return the next character entered at the
keyboard. All control characters will be read, except Ctrl+S, Ctrl+Q, Ctrl+0, and Ctrl+W,
which will have their normal terminal control functions.

When reading from the serial line, GETC will return the next data byte immediately,
unmodified. (Note that if the serial line is configured to recognize Ctrl+S and Ctrl+Q
automatically as control characters, then those characters are not returned by the GETC
function.)

Normally, the byte value returned is in the range 0 to 255 (decimal). If an input error occurs,
a negative error code number is returned. The meanings of the error codes are listed in the
section System Messages.

Example

The following program segment reads characters from a disk file until a comma (,) character,
a control character, or an I/O error is encountered. The characters are appended to the string
variable $field. (The disk file must have already been opened for accessing variable-length
records.)

$field = ""
c = GETC(5)
WHILE (c > "HI1F) AND (c <> ',) DO
$field = $field+SCHR(c)
c = GETC(5)
END
IF ¢ < 0 THEN
TYPE $ERROR(c)
HALT
END

Related Keywords
ATTACH program instruction

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 267

GET.EVENT real-valued function

GET.EVENT real-valued function

Syntax
GET.EVENT (task)

Function

Return events that are set for the specified task.

Usage Considerations

Do not confuse GET.EVENT with the GETEVENT program instruction, which returns
information from a graphics window or the terminal.

Parameter

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which events are to be returned. The valid
rangeis-1to 6, or-1to 27, inclusive. If the parameter is omitted, or
has the value -1, the current task is referenced.

NOTE: The basic system allows 7 tasks (0-6). The eV+ Extensions
option allows 28 tasks (0-27).

Details

The events are returned in a value that should be interpreted as a sequence of bit flags, as
detailed below.

Bit 1 (LSB) I/O Completion (mask value = 1)
This bit being set indicates that a system input/output operation has completed.

See the descriptions of SET.EVENT and WAIT.EVENT for more details.

Related Keywords
CLEAR.EVENT program instruction
SET.EVENT program instruction
WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 268

GLOBAL program instruction

GLOBAL program instruction

Syntax

GLOBAL type variable, ..., variable

Function
Declare a variable to be global and specify the type of the variable.

GLOBAL statements must appear before any executable statement in the program.

Parameters
type Optional parameter specifying the type of a variable. The acceptable
types are:
LOC Location variable (transformation, precision
point, belt)
REAL Single-precision real variable
DOUBLE Double-precision real variable

See the Details section for the default type.

variable Variable name (belt, precision point, real-value, string, and
transformation). Each variable can be a simple variable or an array. If
the type parameter is specified, all the variables must match the
specified type. Array variables must not have their indexes specified.

Details

Variables that are not declared to be AUTO or LOCAL are GLOBAL by default. Undeclared
scalar variables default to double precision.

Thus, double-precision and location global variables do not need to be declared.

Global variables can be seen by any program that does not declare a LOCAL or AUTO variable
of the same name. Thus, if program_a declares varl to be a GLOBAL variable and
program_b declares varl to be AUTO, program_b cannot use or alter GLOBAL varl. A new
copy of variable varl that is specific to program_b is created each time program_b
executes.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 269

GLOBAL program instruction

Examples
GLOBAL S$str 1, $str 2, x ;jcreate 2 string and 1 untyped
variable
GLOBAL LOC #ppoint 1 ;jcreate 1 global precision point
variable
GLOBAL var_1, var_2 ;create 2 double prec. reals

Related Keywords
AUTO program instruction

LOCAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 270

GOTO program instruction

GOTO program instruction

Syntax
GOTO label

Function

Perform an unconditional branch to the program step identified by the given label.

Parameter

label Label of the program step to which execution is to branch. Step labels
are integer values that range in value from 0 to 65535.

Details

This instruction causes program execution to jump to the line that contains the specified
step label. Note that a step label is different from a line number. Line numbers are the
numbers automatically assigned by the eV+ program editors to assist the editing process.
Step labels must be explicitly entered on program lines where appropriate.

Modern, structured programming considers GOTO statements to be poor programming
practice. Omron Adept suggests you use one of the other control structures in place of GOTO
statements.

Example

The following program segment asks you to enter a number from 1 to 100. If the number
input is not in that range, the GOTO 10 instruction at line number 27 causes execution to
jump to step label 10 (at line number 23).

21 ; Get a number from the user

22

23 10 PROMPT "Enter a number from 1 to 100: ", number
24

25 IF (number < 1) OR (number > 100) THEN

26 TYPE /B, /Cl, *Invalid response*, /Cl

27 GOTO 10

28 END

Related Keywords
DO program instruction

EXIT program instruction
FOR program instruction

IF ... THEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 271

GOTO program instruction

NEXT program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 272

HALT program instruction

HALT program instruction

Syntax
HALT

Function

Stop program execution and do not allow the program to be resumed.

Usage Considerations

The PROCEED command cannot be used to resume program execution after a HALT
instruction causes the program to halt.

HALT forces an FCLOSE and/or DETACH on the disk and serial communication logical units as
required.

Details

Causes a BREAK and then terminates execution of the application program regardless of any
program loops remaining to be completed (see the EXECUTE command and instruction). The
message (HALTED) is displayed.

After termination by a HALT instruction, program execution cannot be resumed with a
PROCEED or RETRY command.

Related Keywords
PAUSE program instruction

RETURN program instruction

STOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 273

HAND real-valued function

HAND real-valued function

Syntax
HAND

Function

Return the current hand opening.

Usage Considerations

The HAND function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the HAND function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "hand" cannot be used as a program name or variable name.

Details

This function returns 0 if the hand is closed or 1 if the hand is opened or relaxed.

Related Keywords
CLOSE program instruction
CLOSEI program instruction
OPEN program instruction
OPENI program instruction
RELAX program instruction
RELAXI program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 274

HAND.TIME system parameter

HAND.TIME system parameter

Syntax
... HAND.TIME

Function

Establish the duration of the motion delay that occurs during OPENI, CLOSEI, and RELAXI
instructions.

Usage Considerations

The current value of the HAND.TIME parameter can be determined with the PARAMETER
monitor command or real-valued function.

The value of the HAND.TIME parameter can be modified only with the PARAMETER monitor
command or program instruction.

The parameter name can be abbreviated.

If the eV+ system is controlling more than one robot, the HAND.TIME parameter controls
the hand operation times for all the robots.

Details

The OPENI, CLOSEI, and RELAXI instructions are used to operate the hand after the robot
has stopped moving. The HAND.TIME parameter determines the time allotted to the hand
actuation before the next robot motion can be initiated.

The value for this parameter is interpreted as the number of seconds to delay. It can range
from 0 to 1018, Because of the way eV+ generates time delays, the HAND.TIME parameter is
internally rounded to the nearest multiple of 0.016 seconds.

This parameter is set to 0.05 seconds when the eV+ system is initialized.

Example
Set the hand operation delay time to 0.5 seconds:

PARAMETER HAND.TIME = 0.5

Related Keywords
CLOSETI program instruction
OPENI program instruction
RELAXI program instruction
PARAMETER monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 275

HAND.TIME system parameter

PARAMETER program instruction
PARAMETER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 276

HERE program instruction

HERE program instruction

Syntax

HERE location_var

Function

Set the value of a transformation or precision-point variable equal to the current robot
location.

Usage Considerations

The HERE instruction returns information for the robot selected by the task executing the
instruction.

If the eV+ system is not configured to control a robot, executing the HERE instruction does
not generate an error because of the absence of a robot. However, the location value
returned may not be meaningful.

The word "here" cannot be used as a program name or variable name.

Parameter

location_var Transformation, precision point, or compound transformation that
ends with a transformation variable.

Details

This instruction sets the value of a transformation or precision-point variable equal to the
current robot location.

Normally, the robot location is determined by reading the instantaneous values of the joint
encoders. However, if the robot has either backlash or linearity compensation enabled, the
commanded robot location is used.

If the location_var is a compound transformation, only the right-most transformation is
defined. Its value is set equal to the current robot location relative to the reference frame
determined by the other transformations. An error message results if any of the other
transformations are not already defined.

Examples

Set the transformation part equal to the current robot location:

HERE part

Assign the current location of the robot to the precision point #part:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 277

HERE program instruction

HERE #part

Related Keywords
HERE monitor command
HERE transformation function
SELECT program instruction
SELECT real-valued function

SET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 278

HERE transformation function

HERE transformation function

Syntax
HERE

Function

Return a transformation value that represents the current location of the robot tool point.

Usage Considerations

The current location is obtained by reading the instantaneous value of the joint encoders so
that it represents the actual location of the robot.

The HERE function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the HERE function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "here" cannot be used as the name of a program or variable.

Example

Calculate the distance between the current robot location and the location the robot is
currently moving to:

dist = DISTANCE (HERE, DEST)

Related Keywords
DEST transformation function
HERE monitor command
HERE program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 279

ID real-valued function

ID real-valued function

Syntax

ID (component, device, board)

Function

Return values that identify the configuration of the current system.

Parameters

component Real value, variable, or expression (interpreted as an integer) whose
value determines which component of identification information is
returned.

device Optional real value, variable, or expression (interpreted as an
integer) whose value selects the device to be identified. Device #1
(the basic system) is assumed if this parameter is omitted.

board Optional integer specifying the CPU of interest when the device
parameter value equals 4. Board #1 (the main CPU) is assumed if
this parameter is omitted.

Details

The ID function enables a program to access the information displayed by the ID monitor
command. The values of the components are the same as the fields displayed by that
command.

The function returns the value 0 for devices that do not exist. Device numbers that do not
exist return the value 0. For valid devices, an *Invalid argument* error message is reported
if the requested component is not valid.

The following table describes the type of information returned when the device parameter is
set at a specified value. To see the acceptable values for the component parameter and the
type of information returned for each device value, click on the device link in the table
below.

To obtain information on... Set the device parameter to...
The basic system device = 1 (This is the default value.)
The pendant device = 2 returns information about the manual

control pendant.

Robot device = 8 or device = 10+r returns information

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 280

ID real-valued function

To obtain information on... Set the device parameter to...

about the robot.

CPU and board info device = 4 returns information about the CPU
and processor board (if the board parameter is
specified).

Force Sensing Systems device = 50 returns information about force

sensing systems.

component Result of ID (component, 1)

1 Model designation of the system controller

2 Serial number of the system controller
Version number of the eV+ software in use. This is the internal
version that is incremented for each software release. It also
differentiates V+ from eV+ (V+ ends at version 17.x; eV+ begins at

3 version 2.x).
To get the external product version number, which is displayed by
the ID Monitor Command, use ID(14,1).

4 Revision number of the eV+ software in use

5 First option word for the eV+ system (*)

6 Second option word for the eV+ system (*)

7 Size of the system program memory (in kilobytes, K[1 K= 1024 8-
bit bytes])

8 Not used.

9 Controller product-type value

10 Returns the SmartController base board revision code.

11 Controller hardware configuration. This field should be interpreted as

a bit field. For details on the information returned, see the section
Controller Hardware Configuration returned by ID(11,1), below.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 281

ID real-valued function

component Result of ID (component, 1)

12 Returns the first and second parts of the security ID (shown as
"aaaa-bbbb") below. (The value returned needs to be displayed in
hexadecimal format to look the same as "aaaa-bbbb".)

Security ID: aaaa-bbbb-cccc

13 Returns the third part of the security ID (shown as "cccc") below.
(The value returned needs to be displayed in hexadecimal format to
look the same as "cccc".

Security ID: aaaa-bbbb-cccc

14 External version number of the eV+ software in use. Also, see ID
(3,1).

*The system option words are described in ID Option Words on page 1.

Controller Hardware Configuration returned by ID(11,1)

The value for the controller hardware configuration [returned by ID(11,1)] should be
interpreted as a bit field, as follows:

Bit 3 - Emulator (mask = 4)

This bit is set if the system is an emulator (e.g. it runs on PC with virtual robot instead of

running on a SmartController-EX controlling real robots).

Pendant

Device number 2 refers to the pendant.

CPU and Board Configuration

Device number 4 refers to the system CPUs. (If the indicated board does not exist, all values

arereturnedas-1.)

component

Result of ID (component, 4, board)

5

CPU type:

8 = SmartController EX

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 282

ID real-valued function

component Result of ID (component, 4, board)

6 Bit field indicating which software modules are active on the board.
Bit definitions are provided in the following table.

Mask Value
Interpretation

e When Bit Set

Decimal Hexadecimal

1 1 1 Processor is
running the evV+
Operating
System

2 2 2 Obsolete

3 4 4 Processor is
running the
Servo software

4-16 Reserved for
future use
(currently zero)

Robot and Encoder Configuration

Device number 8 returns information for the currently selected robot. The acceptable values
for the component parameter are the same as for a specified robot. (See the following
table.)

Device number 10 refers to the external encoders connected to the robot controller. The
acceptable values for the component parameter are the same as for a robot.

Device numbers 11, 12, ... refer to robot number 1, 2, ..., respectively, for each robot
connected to the controller. That is, a device number equal to 10+r refers to robot numberr,
which can range from 1 to the value returned by the function SELECT(ROBQOT, -1). The
number of the robot that is currently selected can be obtained with the function SELECT
(ROBQOT).The acceptable values for the component parameter, and the corresponding
values returned, are listed in the following table.

component Result of ID (component, 10+r)

1 Model designation of the robot

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 283

ID real-valued function

component Result of ID (component, 10+r)

2 Serial number of the robot

3 Number of motors configured for the robot
This normally is equal to the number of configured joints (see
component 7).

4 Value interpreted as bit flags for the robot joints that are enabled: bit
1 for joint 1, and so on. (The value is zero if the robot does not have
joints that can be disabled selectively. For example, this value is
defined for the X/Y/Z/Theta robot but is zero for the 4/5-axis SCARA
module.)

5 Robot control-module identification number

6 Obsolete

7 Number of robot joints configured for use

8 Robot option word (*)

9 Robot product-type value

10 Obsolete

11 Second robot option word (*)

12 Information on the robot module
Currently, only bit 1 (mask 1) is defined. If set, this bit indicates that
the specified robot is an Omron Adept robot.

13 Returns the safety level for the robot. Possible values are:
0 = No special safety level
1 = Configured as Category 1 Robot System per 1ISO 10218 and
EN954
3 = Configured as Category 3 Robot System per ISO 10218 and
EN954

14 Editable axis mask (always 0).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 284

ID real-valued function

component Result of ID (component, 10+r)

15 eSeries robot type. Possible values are:

0 = eSeries Lite/eVario
1 = eSeries Standard
2 = eSeries Pro

3 = sSeries

16 Returns the first and second parts of the robot security ID (shown as
"aaaa-bbbb") below. (The value returned needs to be displayed in
hexadecimal format to look the same as "aaaa-bbbb".)

Security ID: aaaa-bbbb-cccc

17 Returns the third part of the robot security ID (shown as "cccc")
below. (The value returned needs to be displayed in hexadecimal
format to look the same as "cccc".)

Security ID: aaaa-bbbb-cccc

18 Returns the number of the task currently attaching the robot.

*The robot option words are described in the Robot Option Words topic

Force Sensing Configuration

Device number 50 refers to the currently selected force sensor. Device numbers 51 through
66 refer to force sensors numbered 1 to 16, respectively.

See the documentation for the SELECT program instruction for an explanation of selecting
among multiple force sensors. The acceptable values for the component parameter, and the
corresponding values returned, are listed below.

component Result of ID (component, 50)
1 Model number of force sensor (0 if no force sensor is connected)
2 Serial number of force sensor (0 if no force sensor is connected)
3 Obsolete
4 Version number of force-sensing software
5 Option word for force system

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 285

ID real-valued function

component Result of ID (component, 50)

6 Size of the data collection buffer (in K)

Related Keywords

ID monitor command

$1ID string function

SELECT monitor command
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 286

$1ID string function

$ID string function

Syntax
$ID (select)

Function

Return the system ID string.

Parameter
select Integer specifying the ID information to return. It may be:
Integer Description
-1 Returns the system edit message.
-2 Returns the edit letter and issue number for the eV+
system.

-3 Returns the vision edit message string.
-4 Returns the servo edit message string.

Details

This function returns a string that identifies the release edition and date of the requested
system software component.

Related Keywords

ID monitor command

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 287

IDENTICAL real-valued function

IDENTICAL real-valued function

Syntax

IDENTICAL (location, location)

Function

Determine whether two location values are exactly the same.

Parameter

location Transformation value that defines one of the locations of interest. This
can be a function, a variable, or a compound transformation.

Details

This function returns the value TRUE if the positional and rotational components of the two
specified locations are exactly the same. Even a single-bit difference in any of the
components results in the value FALSE being returned.

Example

The statement

x = IDENTICAL (base.l:loc,part)

sets the value of the real variable x to TRUE if the value of loc relative to the base.1 frame is
exactly the same as the value stored in the variable part.

Related Keyword
DISTANCE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 288

IF logical_expr THEN program instruction

IF logical_expr THEN program instruction

Syntax

IF logical_expr THEN
first steps

ELSE
second steps

END

Function

Conditionally execute a group of instructions (or one of two groups) depending on the result
of a logical expression.

Usage Considerations

There must be a matching END statement for every IF... THEN in a program.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE (nonzero)
or FALSE (zero).

first_steps Optional group of program instructions that are executed only if
the value of the logical expression is TRUE (nonzero).

second_steps Optional group of program instructions that are executed only if
the value of the logical expression is FALSE (zero).

The ELSE statement may be omitted if there are no steps in this
group.

Details

This control structure provides a means for conditionally executing one of two groups of
instructions. In detail, it is processed as follows:

1. logical_expr is evaluated. If the result is FALSE (zero), skip to item 4 below.
2. Thefirst group of instruction steps is executed.

3. Skiptoitem 5 below.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 289

IF logical_expr THEN program instruction

4. Ifthereisan ELSE step, the second group of instruction steps is executed.
5. Program execution continues at the first step after the END step.
The ELSE and END steps must be on lines by themselves as shown.

There are no restrictions on the instructions that can be in either group in the structure.
Thus, nested IF structures can be used.

Examples

Consider the following segment of a eV+ program. If the value of row is greater than 5, the
expression row > 5 will be TRUE (-1.0), so step 22 is executed and 24 is not executed.
Otherwise, step 22 is not executed, but step 24 is executed:

21 IF row > 5 THEN

22 spacing = 10
23 ELSE
24 spacing = 20
25 END

The next program segment determines whether the variable input.signal has been defined. If
it has, the program checks the signal indicated by the value of input.signal and types different
messages depending on its setting. Note that the outer IF does not include an ELSE clause:

71 IF DEFINED(input.signal) THEN

72 IF SIG(input.signal) THEN

73 TYPE "The input signal is ON"
74 ELSE

75 TYPE "The input signal is OFF"
76 END

77 END

Refer to the DEFINED function for details on testing nonreal arguments.

Related Keywords
CASE program instruction
DEFINED real-valued function
ELSE program instruction

IF... GOTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 290

IF logical_expr GOTO program instruction

IF logical_expr GOTO program instruction

Syntax
IF logical_expr GOTO label

Function

Branch to the specified step label if the value of the logical expression is TRUE (nonzero).

Usage Considerations

In general, it is a better programming practice to use the IF ... THEN control structure rather
than this instruction.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE (nonzero) or
FALSE (zero).

label Program step label of a step in the current program.

Details

If the value of the expression is nonzero, program execution branches and begins executing
the statement with a label matching the one specified. If the value of the expression is zero,
the next instruction is executed as usual.

If the specified statement label is not defined, the program is not executable. Any attempt to
branch to an undefined label is identified when the program editor is exited and when the
program is loaded into memory from a disk file.

Example

The most common use for IF...GOTO is as an exit-on-error instruction. The following code
checks each I/0 operation and branches to a label whenever an I/O error occurs:

ATTACH (dlun, 4) "DISK"
IF IOSTAT (dlun) < 0 GOTO 100
FOPENW (dlun) "my file"
IF IOSTAT (dlun) < 0 GOTO 100

FCLOSE (dlun) "my file"
IF IOSTAT (dlun) < 0 GOTO 100
DETACH (dlun)
100 IF IOSTAT(dlun) < 0 THEN
TYPE S$ERROR (IOSTAT (dlun))
END

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 291

IF logical_expr GOTO program instruction

Related Keywords
GOTO program instruction

IF ... THEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 292

IGNORE program instruction

IGNORE program instruction

Syntax
IGNORE signal

Function

Cancel the effect of a REACT or REACTI instruction.

Usage Considerations

Only digital I/0O signals that are installed and configured as inputs are available for reaction
monitoring.

The IGNORE instruction must be executed by the same program task that initiated the
REACT or REACTI instruction.

Parameter

signal Digital input signal number in the range 1001 to 1012, an internal
signal in the range 2001 to 2008.

Details

Disables continuous monitoring of the specified signal, canceling the effect of the last REACT
or REACTI for this signal.

Example

Stop monitoring of the digital input or soft signal identified by the value of test.

IGNORE test

Related Keywords
LOCK program instruction
REACT program instruction
REACTI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 293

INRANGE real-valued function

INRANGE real-valued function

Syntax

INRANGE (location)

Function

Return a value that indicates whether a location can be reached by the robot and, if not, why
not.

Usage Considerations

The INRANGE function returns information for the robot selected by the task executing the
function.

Parameter

location Optional transformation function, variable, or compound that specifies a
desired position and orientation for the robot tool tip.

If this parameter is omitted, INRANGE will indicate if the current
location of the selected robot can be reached.

Details

The function returns a value that indicates whether or not the given location can be reached
by the robot. The value zero indicates that the specified location can be reached.

If the location cannot be reached, the returned value is a coded binary number that identifies
the reason. A bit equal to 1 in the value indicates that the corresponding robot constraint
would be violated, as shown in the table below:

Mask Value
Bit # Hex Decimal Indication if bit set
1 1 1 Joint or motor 1 is limiting
2 2 2 Joint or motor 2 is limiting
3 4 4 Joint or motor 3 is limiting
4 8 8 Joint or motor 4 is limiting

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 294

INRANGE real-valued function

Mask Value
Bit # Hex Decimal Indication if bit set

5 10 16 Joint or motor 5 is limiting

6 20 32 Joint or motor 6 is limiting

7 40 64 Joint or motor 7 is limiting

8 80 128 Joint or motor 8 is limiting

9 100 256 Joint or motor 9 is limiting

10 200 512 Joint or motor 10 is limiting

11 400 1024 Joint or motor 11 is limiting

12 800 2048 Joint or motor 12 is limiting

13 1000 4096 Collision detected

14 2000 8192 Location is too close in

15 4000 16384 Location is too far out

16 8000 32768 Motor is limiting, rather
than joint (see below)

17 10000 65536 Orientation is out of range
for the Quattro platform

18 20000 131072 Kinematic solution not
found

If the motion system is configured to return motor-limit as well as joint-limit errors, bit 16
indicates whether a joint or motor would limit motion to location. If bit 16 is set, all the joints
passed their limit checks, and the indicated motor is limiting. Otherwise, the indicated joint is

limiting.
The mask values indicated above can be used with the BAND operator to determineif a
corresponding bit is set.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 295

INRANGE real-valued function

Example

Returns the value zero if the robot can reach the location defined by the compound
transformation pallet:hole.

INRANGE (pallet:hole)

If both joints 2 and 3 would prevent the motion from being made, the value returned would
be 6.

Related Keyword

SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 296

INSTALL program instruction

INSTALL program instruction

Syntax

INSTALL password, op

Function

Install or remove software options available to Omron Adept systems.

Usage Considerations

You must have received the authorization password from Omron Adept. INSTALL can be run
only on CPU #1 in multiple CPU systems.

Parameters

password String expression that contains a 15-character value assigned by
Omron Adept.

op Optional integer indicating the desired operation:

0 = install option (default)
1 = remove option

Details

When you purchase additional software options from Omron Adept, the software is delivered
with a software license and authorization password that enables the software for a particular
controller. If the option is not enabled, the software does not load correctly.

The password is keyed both to the software option and the serial number of your controller.
The password cannot be used on any controller other than the one for which you purchased
the software option.

Example

If you purchased the AIM MotionWare software from Omron Adept and the password
provided with the option is 4EX5-23GH8-AY3F, the following instruction enables the
software option:

INSTALL "4EX5-23GH8-AY3F"

NOTE: Some options, such as AIM software, have additional software files that must be
copied to the hard drive. Other options, such as AdeptVision, are already resident and
need only to be enabled.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 297

INT real-valued function

INT real-valued function

Syntax

INT (value)

Function

Return the integer part of the value.

Parameter

value Real-valued expression whose integer part is returned by this function.

Details

Returns the portion of the value parameter to the left of the decimal point (when the value is
written without the use of scientific notation).

The value is not rounded before dropping the fraction.

The sign of the value parameter is preserved unless the result is zero.

Examples
INT(0.123) ;Returns 0.0
INT (10.8) ;Returns 10.0
INT (-5.462) ;Returns -5.0
INT (1.3125E+2) ;Returns 131.0
INT (cost) ;Returns the wvalue of "cost",
;truncated to an integer.
INT (cost+0.5*SIGN (cost)) ;Returns the value of "cost",
rounded

;to the nearest integer. (The SIGN
; function needs to be included to
;jcorrectly round negative values of
;"cost".)

Related Keyword

FRACT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 298

INTB real-valued function

INTB real-valued function

Syntax
INTB ($string, first_char)

Function

Return the value of two bytes of a string interpreted as a signed 16-bit binary integer.

Parameters
$string String expression that contains the two bytes to be converted.
first_char Optional real-valued expression that specifies the position of the first

of the two bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first two bytes of
the string are extracted. If first_char is greater than 1, it is interpreted
as the character position for the first byte. For example, a value of 2
means that the second byte contains bits 9 to 16 and the third byte
contains bits 1 to 8. An error is generated if first_char specifies a byte
pair that is beyond the end of the input string.

Details

Two sequential bytes of a string are interpreted as being a 2's-complement 16-bit signed
binary integer. The first byte contains bits 9 to 16, and the second byte contains bits 1 to 8.

The main use of this function is to convert binary numbers from an input data record to
values that can be used internally by eV+.

The expression

value = INTB(Sstring, first char)

is equivalent to the following instruction sequence:
value = ASC($string, first char)*256 + ASC($string,first char+l)
IF value > 32767 THEN

value = value-65536
END

To compute an unsigned integer, use: INTB($string) BAND ~HFFFF.

Examples

INTB (SCHR(10)+SCHR(5)) ;Returns the value 2565

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 299

INTB real-valued function

INTB (SCHR (255) +$SCHR (255)) ;Returns the value -1

Related Keywords
ASC real-valued function
DBLB real-valued function
FLTB real-valued function
$INTB string function
LNGB real-valued function

VAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 300

$INTB string function

$INTB string function

Syntax
$INTB (value)

Function

Return a 2-byte string containing the binary representation of a 16-bit integer.

Parameter

value Real-valued expression, the value of which is converted to its binary
representation.

Details

The integer part of a real value is converted into its binary representation and the low 16 bits
of that binary representation are packed into a string as two 8-bit characters. Bits 9-16 are
packed first, followed by bits 1-8.

This function is equivalent to:

$CHR (INT (value/256) BAND "“HFF) + $CHR(INT(value) BAND "HFF)

The main use of this function is to convert integers to binary representation within an output
record of a data file.
Example

SINTB (65*%256+67) ;Returns the character string "AC".

Related Keywords
$CHR string function
$DBLB string function
$FLTB string function
INTB real-valued function

$LNGB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 301

INVERSE transformation function

INVERSE transformation function

Syntax

INVERSE (transformation)

Function
Return the transformation value that is the mathematical inverse of the given

transformation value.

Parameter

transformation Transformation-valued expression.

Details

Mathematically, the value from this function is a transformation such that the value of the
compound transformation shown below is the identity transformation (or NULL).

INVERSE (trans) :trans

Stated another way, consider a transformation x that defines the location of object A relative
to object B. Then INVERSE(X) is the transformation that defines the location of object B
relative to A.

Example

Consider the case where the location part_1 is known in robot coordinates, and you want to
find the location hole_1 with respect to part_1. We can use the compound expression:

part_1l:hole 1

to represent the position of hole_1 in robot coordinates.

Suppose we move the robot to hole_1 and use the HERE command to define hole_pos as the
position of hole_1 in robot coordinates. In other words, we want to find hole_1, knowing the
values of part_1 and hole_pos, and knowing that:

part l:hole 1 is equal to hole pos

We can then use the INVERSE function to determine hole_1 with the instruction:

SET hole 1 = INVERSE (part 1):hole pos

Note that the SET instruction can be used without explicit use of INVERSE by using a
compound transformation on the left-hand side, with identical results. That is, the
instruction defines hole_1.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 302

INVERSE transformation function

SET part l:hole 1 = hole pos

Related Keywords
HERE program instruction

SET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 303

IOSTAT real-valued function

IOSTAT real-valued function

Syntax
IOSTAT (lun, mode)

Function

Return status information for the last input/output operation for a device associated with a
logical unit.

Usage Considerations

IOSTAT returns information only for the most recent operation. If more than one operation
is performed, the status should be checked after each one.

Parameters

lun Real-valued expression whose integer value is the logical unit number
for the I/O device of interest. (See the description of ATTACH for
information on the logical unit numbers recognized by the eV+ system
and how logical units are associated with I/0 devices.)

mode Optional expression that selects the type of I/O status to be returned for
the specified logical unit. The following table shows the effects of the
various mode values. (If the mode value is omitted, the value zero is

assumed.)
Mode Value returned by IOSTAT
0 Status of the last complete I/0O
operation
1 Status of a pending preread request
2 Size in bytes of the last file opened or
of the last record read?
3 Status of any outstanding write
request
1 When sequential-access mode is being used, the byte count
returned by IOSTAT(...,2) includes the carriage-return and line-
feed characters at the end of each record.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 304

IOSTAT real-valued function

Details

Unlike most eV+ instructions, I/O instructions do not force the program to stop when an
error is detected. Instead, the error status is stored internally for access with the IOSTAT
function. This feature allows the program to interpret and possibly recover from many I/O
errors.

When reading a file of unknown length, IOSTAT is the only method to determine when the
end of the file is reached.

The value returned for modes 0, 1, and 3 is one of the following:

IOSTAT Value
Returned on Description
EOF
1 Normal success; for mode 3 this value indicates that no write
request is outstanding.
0 Operation not yet complete
<0 Standard eV+ error number. See System Messages for a
description of standard eV+ error numbers.
Examples

Try to open a file for reading, and make sure the file exists. If the file does exist, record its size
(in bytes).

ATTACH (dlun, 4) "DISK"
FOPENR (dlun) "RECORD.DAT"
IF IOSTAT (dlun) < 0 THEN
TYPE "Error opening file"
HALT
END
file.size = IOSTAT (dlun,2)

Read and display records until the end of the file is reached.

ieeof = -504 ;End-of-file error code
READ (dlun) Srecord
WHILE IOSTAT (dlun) > 0 DO

TYPE S$record

READ (dlun) S$Srecord

END
IF IOSTAT (dlun) == ieeof THEN
TYPE "Normal end of file"
ELSE
TYPE /B, "I/O error ", S$SERROR(IOSTAT (dlun))
END

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 305

IOSTAT real-valued function

FCLOSE (dlun)
DETACH (dlun)

In the following example a TCP server program segment performs a no-wait read and then
checks the status to determine whether a client connection or disconnection was made.

ATTACH (lun,4) "TCp"
IF IOSTAT (lun) < 0 THEN
TYPE "Attach error: ", SERROR(IOSTAT (lun))
END
no wait =1
READ (lun, handle, no wait) $in.str
status = IOSTAT (lun)
CASE status OF

VALUE 1: ;Data received
TYPE "Data received. Handle =", handle

VALUE 100: ;New connection opened
TYPE "New connection established. Handle =", handle

VALUE 101: ;Connection closed
TYPE "Connection closed. Handle =", handle

VALUE -526: ;No data received
WAIT

ANY ;Some other error
TYPE "Error during READ: ", S$ERROR (status)
GOTO 100

END

Related Keywords
ATTACH program instruction
FCLOSE program instruction
FCMND program instruction
FEMPTY program instruction
FOPEN program instruction
FSEEK program instruction
READ program instruction

WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 306

IPS keyword

IPS keyword

Syntax
SPEED value IPS ALWAYS

Function

Specify the units for a SPEED instruction as inches per second.

NOTE: To specify speed in millimeters per second, use the MMPS conversion factor.

Usage Considerations
IPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot motion
occurs.

Speeds specified with the IPS parameter apply to straight-line motions. Joint-interpolated
motions do not maintain the specified tool speed.
Details

IPS is an optional parameter for the SPEED program instruction, which specifies the units to
be used for the speed value. That is, when IPS is specified in a SPEED instruction, the speed
value is interpreted as inches/second (for straight-line motions).

See the description of the SPEED program instruction for further details on setting motion
speeds with the IPS conversion factor.
Example

Set the robot tool tip speed to 20 inches/second for the next straight-line robot motion
(assuming the monitor speed is set to 100):

SPEED 20 IPS

Related Keywords
MMPS keyword

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 307

JHERE program instruction

JHERE program instruction

Syntax

JHERE variablel, ..., variablen

Function

Records the current robot joint positions in real or double-precision variables. This instruction
supports Micro eV+.

Parameters

variablel A real or double-precision variable to receive the position of joint 1.

variablen A real or double-precision variable to receive the position of joint n.

Details

You can specify a maximum of 12 variables. The variables can be array elements with index
expressions.

You can omit variables from the list as desired. The following example records the joint-3 and
joint-5 positions respectively:

JHERE , , 33,,35

If more variables are defined than there are joints for a robot, the extra variables are zero.

Related Keyword

JMOVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 308

JMOVE program instruction

JMOVE program instruction

Syntax

JMOVE expressionl,...,expressionn

Function

Moves all robot joints to positions described by a list of joint values. The robot performs a
coordinated motion in joint-interpolated mode. This instruction is supported by Micro eV+.

Parameters

expressionl An optional expression for the joint-1 value.

expressionn An optional expression for the nth joint value.
NOTE: You must specify at least one expression (joint), in order to move the robot.

Details
You can specify a maximum of 12 expressions.

If an expression is omitted, that joint is not moved. The following example moves only joint 1
and joint 3.

JMOVE j1,,33

If more expressions are specified than there are joints for a robot, the extra expressions are
ignored.

Related Keyword

JHERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 309

JOG program instruction

JOG program instruction

Syntax

JOG (status) robot, mode, axis, speed, location, appro_dist

Function

Moves ("jogs") the specified joint of the robot, or moves the robot tool along the specified
Cartesian direction. Each time JOG is executed, the robot moves for up to 300 ms.

Usage Considerations

The specified robot cannot be attached by any other task when using a mode other than
COMP. Otherwise, the error message *Robot interlocked* is generated. The robot can be
attached by the current program, but it does not need to be attached. If the robot is not
attached when the JOG instruction is executed, remember to attach the robot after the JOG
instruction before executing any other motion instructions.

After the robot is moved with the JOG instruction, the system is left in MANUAL mode (i.e.,
as though a manual mode had been selected on the pendant). JOG mode 5 (or the pendant)
can be used to restore COMP mode. Otherwise, an error *COMP mode disabled* will be
returned when a task attempts to attach the robot.

If a joint is out of range, the JOG instruction can be used to bring the joint back into range.
See the Details section for more information.

Parameters

status An optional status variable (returns 1 for success; otherwise, contains
a eV+ error code)

robot Specifies the robot number.
mode Specifies the jog mode, as follows:
-1 Keep-alive mode. Continues the previous instruction for

another 300 ms.

1 Free joint mode. A positive speed will put the specified
joint(s) in Free mode. A negative speed will put the
specified joint(s) out of Free mode.

2 Individual joint control.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 310

JOG program instruction

axis

speed

location

appro_dist

3 World coordinates control.
4 Tool coordinates control.
5 Restore COMP mode.

6 unused.

7

Jog toward the specified location using the specified
speed.

8 Jog toward alignment of the robot tool-Z axis with the
nearest World axis.

9 Cartesian control relative to a frame defined by the
specified location.

(See the Details for information about errors associated with the
modes.)

Specifies the joint number or Cartesian coordinate (X=1, Y=2, ...),
depending on the specified jog mode (see above), for the desired
motion.

This parameter is ignored for modes 7 and 8, but a value must always
be specified.

Specifies the speed and direction of the motion. This is interpreted as a
percentage of the speed in manual mode. Values above 100 are
interpreted as 100%, values below -100 are interpreted as -100%.

If Free mode is specified, a positive speed will put the given joint in free
mode and a negative speed will put the joint out of free mode.

Optional transformation, precision point, location function, or
compound transformation that specifies the destination to which the
robot is to move. This parameter is ignored (and can be omitted) for all
modes except 7 and 9.

Optional real-valued expression that specifies the distance along the
robot tool Z axis between the specified location and the actual desired
destination.

A positive distance sets the tool back (negative tool-Z) from the
specified location; a negative distance offsets the tool forward (positive
tool-Z). This parameter is used only for mode 7.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 311

JOG program instruction

Details

When the status variable is supplied, and there is an error, the JOG instruction does not
cause program execution to stop. The error is simply returned in the STATUS variable.

Each time the JOG instruction is executed, the robot moves for up to 300 ms. Another JOG
can be executed before the previous motion is completed. In fact, for extended smooth
motion, subsequent JOG instructions should be executed within 300 ms of the previous JOG
instruction. The keep-alive mode can be used for that purpose. The keep-alive mode will
have no effect after the timeout of 300 ms; it has an effect only before the robot stops.

The following error conditions can be reported when the instruction is processed:

Mode 1: The error *Illegal joint number* (-609) is returned if FREE mode is not
permitted for the specified joint.

Mode 2: The error *Joint control of robot not possible* (-938) is returned if the robot
does not support joint control.

Modes 3, 4, 8, 9: The error *Cartesian control of robot not possible* (-635) is
returned if the robot does not support Cartesian control.

Mode 7: If the location cannot be reached, the motion stops at the limit of possible
motion and the error *Location out of range* (-610) is returned when the motion
stops. If any other motion error occurs during the motion (e.g., an obstacle is
encountered), the associated error is reported.

Modes 7 and 9: The error *Missing argument* (-454) is returned if a location is not
specified. For mode 7, a straight-line motion is performed toward the specified location
if the location is specified with a transformation. A joint-interpolated motion is
performed if the location is specified with a precision point. However, if the robot does
not permit the type of motion associated with how the location is specified (e.g., the
Quattro robot does not permit joint-interpolated motion), the motion is performed in
the manner that is permitted by the robot.

When a robot joint is out-of-range, it can be driven into range in either of these ways:

Go into MAN mode on the pendant, and manually control the joint.

Put the pendant in COMP mode, and use the JOG instruction to move the joint back
into range. (JOG is allowed only in pendant COMP mode.)

NOTE: Use of COMP mode when a joint is out of range is very restricted. All motion
instructions (except JOG) return a *Position out of range* error in that situation.
In addition, JOG can move the joint only in the direction that moves the joint back
into range..

Examples

The following are some examples of proper use of the JOG instruction:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 312

JOG program instruction

JoGg 1, 2, 3, -10 ;JOG joint 3 in negative direction in
; JOINT mode

JoGg 1, 3, 1, 10 ; JOG X-axis in WORLD mode

JoGg 1, 4, 2, 10 ;JOG Y-axis in TOOL mode

Jog 1, 7, 1, 10,1locl ;JOG toward locl

Jog 1, 7, 1, 10,1locl, 50 ;JOG toward 50 mm above locl

Related Keywords
JMOVE program instruction
JOG monitor command

MOVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 313

KEYMODE program instruction

KEYMODE program instruction

Syntax

KEYMODE first_key,last_key = mode

Function

Set the behavior of a group of keys on the pendant.

Usage Considerations

The pendant must be attached before KEYMODE can be processed. For details on the
pendant key numbers, see Programming the T20 Pendant in the eV+ Language User's
Guide.

Parameters
first_key Real-valued expression that defines the first key numberin a set of
keys to be affected.
last_key Real-valued expression that defines the last key number in a set of
keys to be affected.
mode Real-valued expression that defines the key mode to be set for the
specified set of keys. The mode must have one of the following
values (the modes are described below):
0 Keyboard mode
1 Toggle mode
2 Level mode
Details

The various key modes are described below. See the description of the PENDANT real-valued
function for more information on interaction with the pendant.

0 - Keyboard Mode

Keys programmed in this mode function similar to a terminal keyboard. A program can use
the function PENDANT(0) to request the number of the next key pressed. The program then
wait until one of the keys programmed in KEYBOARD MODE is pressed. The number of the
key is returned. Type-ahead is not possible-the program does not see any keys that are
pressed while there is no PENDANT(0) function pending.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 314

KEYMODE program instruction

1 - Toggle Mode

The state of the key may be read back on the fly. When you press a key that is in this mode,
the internal state maintained by eV+ is toggled. Also, the LED on the key (if any) is toggled.
The LED is on when the key's state is ON. The state of the key is available even when the
pendant is not in USER mode, but only if the pendant is attached.

2 - Level Mode

The key's current level is maintained by the pendant and may be read on the fly. If the
pendant is not in USER mode, the level returned for the key is zero. The key's state is ON only
when it is actually being held down. This is useful, for example, for cursor control. The value
returned is not valid if the pendant is not attached.

Whenever a key is programmed in level mode, its repeat mode is turned off.

Attach/Detach Requirements
The pendant must be attached (with the ATTACH program instruction) before the program

can read keys using the PENDANT function, set the modes of any of the keys, or send text to
the display.
Defaults

The key modes default to keyboard mode when the pendant is attached.

Examples
Set the manual control soft keys to level mode.

KEYMODE 1,5 = 2

Related Keywords

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 315

KILL program instruction

KILL program instruction

Syntax

KILL task_number

Function

Clear a program execution stack and detach any I/O devices that are attached.

Usage Considerations
KILL cannot be used while the specified program task is executing.

KILL has no effect if the specified task execution stack is empty.

Parameter

task_number Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be cleared. (See
below for the default. See the eV+ Language User's Guide for
information on tasks.)

Details

This operation clears the selected program execution stack, closes any open files, and
detaches any I/O devices that may have been left attached by abnormal program
termination.

This situation can occur if a program executes a PAUSE instruction or is terminated by an
ABORT command or instruction, or an error condition, while an I/O device is attached or a file
is open. If a limited-access I/0 device (such as the serial I/O device) is left attached, no other
program task can use that device until it is detached.

The KILL instruction always accesses task #0 if the task number is omitted.

Related Keywords
ABORT monitor command
ABORT program instruction
EXECUTE monitor command
EXECUTE program instruction

STATUS monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 316

LAST real-valued function

LAST real-valued function

Syntax

LAST (array_namel[])

Function

Return the highest index used for an array (dimension).

Usage Considerations

If an automatic variable is referenced (see the AUTO instruction), this function returns the
index specified in the AUTO statement that declared this array, regardless of which elements
have been assigned values.

Parameter
array_name[] Name of the array to be tested. Any type of eV+ array variable
can be specified: real-value, location, string, or belt. At least
one array index must be omitted (see below).
Details

This function can be used to determine which elements of an array have already been
defined. For one-dimension arrays (for example, part[1), this function returns the largest
array index for which an element is defined. (See the first example below.)

For multiple-dimension arrays (for example, $names[,]), this function returns the largest
array index for which an element is defined for the (left-most) dimension that is omitted
from the array specification. (See the second example below.) There cannot be an index
specified to the right of an omitted index.

Note that the value returned by this function is an index, not an array element.
Furthermore, the value is not a count of the array elements that are defined-it is the largest
index for which an array element is defined.

The value -1 is returned if the array does not have any elements defined for the requested
dimension. That is, -1 is returned if any of the following situations occur:

« The array does not exist.

« The array has more or fewer dimensions than the number indicated in the function
call. (For example, LAST(a[]) will return -1 if the array a has two dimensions.)

« The specified dimension in a multiple-dimension array has not been defined at all. (For
example, LAST(a[20,]) returns -1 if LAST(a[,]) returns 19. That is, no elements a
[20,i] exist.)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 317

LAST real-valued function

The error *Illegal array index* results if there is not at least one blank index in the array
specification supplied to this function, or if there is an index specified to the right of a blank
index.

Examples

If the array part[] has all its elements defined from part[0] through part[10], the following
example returns the value 10 (not 11, the number of elements defined).

LAST (partl[])

If the given two-dimension array has elements [2,0], [2,3], and [2,5] defined, the following
example returns the value 5 (regardless of the status of elements [i,j] for i other than 2).

LAST (Snames[2,])

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 318

LATCH transformation function

LATCH transformation function

Syntax
LATCH (select)

Function

Return a transformation value representing the location of the robot at the occurrence of the
last external trigger or Stop on Digital Signal.

Usage Considerations

LATCH(O) returns information for the robot selected by the task executing the function. If
the eV+ system is not configured to control a robot, use of the LATCH(0) function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

Parameter

select Optional integer, expression, or real variable specifying:

0 Robot position latch of currently selected robot (default)
n Robot position latch of robot n

Details

LATCH() returns a transformation value that represents the location of the robot when the
last external trigger occurred or the last Stop On Digital Signal occurred. The LATCHED real-
valued function should be used to determined when an external trigger has occurred and a
valid location has been recorded.

Operation of the external trigger can be configured from the eV+ System Configuration
Editor in the ACE software. For details, see the ACE User's Guide.with ACE.

See the Adept Intelligent Force Sensor User's Guide for details of the Stop on Digital Signal
option.

The DEVICE real-valued function may be used to read the latched value of an external
encoder

Related Keywords

DEVICE real-valued function

LATCHED real-valued function

CLEAR.LATCHES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 319

LATCH transformation function

#PLATCH precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 320

LATCHED real-valued function

LATCHED real-valued function

Syntax
LATCHED (select)

Function

Return the status of the position latch and which input triggered it or the status of the Stop
On Digital Signal.

Parameter
select Integer, expression, or real variable that determines whether any
latches have occurred since the last time the function was executed:
0 Returns latch information for currently selected robot
-n (< 0) Returns latch information for belt n
+n (> 0) Returns latch information for robot n
Return 0 ifnolatch has been detected
Value N if position latch on the rising edge of input N was detected
-N if position latch on the falling edge of input N was detected
NOTE: N represents any digital input signal on the controller, from
1001to 1012
Details

This function returns a nonzero value if a position latch or the Stop on Digital Signal event
occurred (and thus the robot location or belt-encoder position has been latched) since the
LATCHED function was last used. Otherwise, the function returns the value FALSE. When
this function returns a nonzero value, the data for the latch event is made available for
retrieval by the following functions:

« DEVICE Returns position of external encoder
« BELT Returns position of external encoder
« LATCH Returns robot location as a transformation
« #PLATCH Returns robot location as a precision point

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 321

LATCHED real-valued function

NOTE: After one or multiple nonzero values are returned by this function and the latch
buffer is empty, subsequent use of the function returns the value FALSE until the next
occurrence of a latch trigger.

Operation of the position latch can be configured from the eV+ System Configuration Editor
in the ACE software. For details, see the ACE User's Guide.

Related Keywords

DEVICE real-valued function

BELT real-valued function

LATCH transformation function

LATCH transformation function

CLEAR.LATCHES program instruction

#PLATCH precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 322

LEFTY program instruction

LEFTY program instruction

Syntax
LEFTY

Function

Request a change in the robot configuration during the next motion so that the first two
links of a SCARA robot resemble a human's left arm.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a left-handed configuration, this instruction is ignored
by the robot.

The LEFTY instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the LEFTY instruction
causes an error.

The following figure shows the LEFTY/RIGHTY configurations (top view of robot).

LEFTY/RIGHTY

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 323

LEFTY program instruction

Related Keywords

CONFIG real-valued function
RIGHTY program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 324

LEN real-valued function

LEN real-valued function

Syntax
LEN (string)

Function

Return the number of characters in the given string.

Parameter
string String constant, variable, or expression whose length is to be
computed.
Example

Return the number of characters in the string $str:

Sstr = "Hello"
str.len = LEN(Sstr)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 325

LNGB real-valued function

LNGB real-valued function

Syntax
LNGB ($string, first_char)

Function

Return the value of four bytes of a string interpreted as a signed 32-bit binary integer.

Usage Considerations

Since single-precision numbers are stored internally with only 24 bits of significance, input
values that contain more than 24 significant bits are converted with some loss in precision.

Double-precision numbers are stored with 32 bits of significance with the MSB being the sign
bit. Doubles are converted with no loss of precision.

Parameters

$string String constant, variable, or expression that contains the four bytes
to be converted.

first_char Optional real value, variable, or expression (interpreted as an
integer) that specifies the position of the first of the four bytes in the
string. An error results if first_char specifies a series of four bytes
that goes beyond the end of the input string.

If first_char is omitted or has the value 0 or 1, the first four bytes of
the string are extracted. If first_charis greater than 1, itis
interpreted as the character position for the first byte (see below).

Details

Four sequential characters (bytes) of a string are interpreted as being a 2's-complement 32-
bit signed binary integer. The first of the four bytes contains bits 25 to 32 of the integer, the
second of the four bytes contains bits 17 to 24, etc.

For example, if first_char has the value 9, then the ninth character (byte) in the input string
contains bits 25 to 32 of the integer, the tenth byte of the string contains bits 17 to 24, and
so forth.

The main use of this function is to convert binary numbers from an input data record to
values that can be used internally by eV+.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 326

LNGB real-valued function

Example
Return the value 65541.

LNGB (SINTB (1) +$SINTB (5))

Related Keywords

ASC real-valued function

DBLB real-valued function

FLTB real-valued function

INTB real-valued function
$LNGB string function

TRANSB transformation function

VAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 327

$LNGB string function

$LNGB string function

Syntax
$LNGB (value)

Function

Return a 4-byte string containing the binary representation of a 32-bit integer.

Usage Considerations

Real values are rounded and any fractional part is lost. Values must be in the range
AH7FFFFFFF to -~H80000000

Parameter

value Real value, variable, or expression whose value is to be converted to its
binary representation.

Details

The integer part of a real value is converted into its binary representation; the low 32-bits of
that binary representation are packed into a string as four 8-bit characters. Bits 25 to 32 are
packed into the first byte, followed by bits 17 to 24 in the second byte, and so forth.

The main use of this function is to convert integer values to binary representation within an
output record of a data file.

The operation performed by this function is equivalent to the following expression:

SCHR (INT (value/”~H1000000) BAND "HFF)
+ S$CHR(INT (value/"~H10000) BAND "HFF)
+ SCHR(INT (value/”H100) BAND ~HFF)
+ SCHR(INT (value) BAND "“HFF)

Example
Returns the value $INTB(67)+$INTB(12345).

SLNGB (67*65536+12345)

Related Keywords
$CHR string function
$FLTB string function
$INTB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 328

$LNGB string function

LNGB real-valued function

$TRANSB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 329

LOCAL program instruction

LOCAL program instruction

Syntax

LOCAL type variable, ..., variable

Function

Declare permanent variables that are defined only within the current program.

Usage Considerations

Subroutines can be called simultaneously by multiple program tasks and recursively by a
single task. Local and global variables can be corrupted if such calls occur inadvertently.
Thus, the use of automatic variables in place of local variables is recommended.

LOCAL statements must appear before any executable statement in the program.

If a variable is listed in a LOCAL statement, any global variable with the same name cannot
be accessed directly by that program.

The values of local variables are not saved (or restored) by the STORE (or LOAD) monitor
command.

Parameters
type Optional parameter specifying the type of a variable. The acceptable
types are:
LOC Location variable (transformation or precision
point)
REAL Single-precision real variable
DOUBLE Double-precision real variable

See the description of the GLOBAL program
instruction for details on the default type.

variable Variable name (belt, precision point, real-value, string, or
transformation). Each variable can be a simple variable or an array.
Array variables must not have their indexes specified. If a type is
specified, all variables must be of that type.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 330

LOCAL program instruction

Details

This instruction is used to declare variables to be defined only within the current program.
That is, a local variable can be referenced only within its own program. Also, the names of
local variables can be selected without regard for the names of local variables defined in other
programs.

Local variables are allocated only once during program execution, and their values are
preserved between successive subroutine calls. These values are also shared if the same
program is executed by multiple program tasks.

If a program that uses LOCAL (or global) variables is called by several different program tasks,
or called recursively by a single task, the values of those variables can be modified by the
different program instances and cause very strange program errors. Therefore, automatic
variables should be used for all temporary local variables to minimize the chance of errors.
(See the AUTO instruction.)

Variables can be defined as automatic, global, or local. Once a variable has been assigned to a
class, an attempt to assign the variable to a different class will result in the error *Attempt to
redefine variable class*.

Variables can be defined only once within the same context (automatic, local, or global).
Attempting to define a variable more than once (that is, with a different type) will yield the
error *Attempt to redefine variable type*. For details, see Data Types and Operators in the
eV+ Language User's Guide.

Local variables can be referenced with monitor commands such as BPT, DELETE_, DO, HERE,
LIST_, POINT, TEACH, TOOL, and WATCH by using the optional context specifier @. The
general syntax is:

command @task:program command arguments

For more information on specifying program context, see the section Programming eV+ in
the eV+ Language User's Guide.

Example

Declare the variables loc.a, $ans, and i to be local to the current program:

LOCAL loc.a, $ans, 1

Related Keywords
AUTO program instruction

GLOBAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 331

LOCK program instruction

LOCK program instruction

Syntax
LOCK priority

Function

Set the program reaction lock-out priority to the value given.

Usage Considerations

LOCK 0 is assumed whenever program execution is initiated and when a new execution cycle
begins.

Changing the priority may affect how reactions are processed. Before using this instruction,
be sure you know what reactions are active (and their priorities).

Parameter

priority Real-valued expression with a value from 0 to 127, which becomes the
new reaction lock-out priority.

Details

When a program is EXECUTE(, it is placed on the execution stack. When the program's task
becomes the highest priority task in a time slice, the program's priority is set to 0 and it
begins execution. During actual execution, a program's task can be suspended at the end of
a time slice, in which case the task waits until the next time it is the highest priority task in a
time slice. The LOCK instruction does not affect the task priority value within a time slice: It
only changes the program priority of an executing program.

Program priority becomes important when a reaction routine (REACT, REACTE, REACTI) is
invoked. A program can defer execution of a REACT or REACTI routine by setting the
temporary program priority to a value higher than the REACT or REACTI program priority.
This is the function of a LOCK instruction. For example, if a LOCK instruction changes the
temporary program priority to 20, any REACT or REACTI interrupts with lower priority values
are deferred. (REACTE routines cannot be deferred by priority considerations.)

Deferred reactions are not ignored. Every time a new LOCK instruction is processed, any
deferred reaction programs are checked to see if their priority is high enough for them to
execute. As soon as the program priority is lowered, all pending reaction routines with a
higher priority are run according to their relative priority.

The PRIORITY real-valued function can be used to determine the program priority at any
time.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 332

LOCK program instruction

NOTE: Although a LOCK instruction can be used to change the program priority within a
reaction program, the priority still returns to its prereaction value when a RETURN is
executed in the program. This occurs only when executing a RETURN from a reaction
program.

Example
Increase the program priority by 10:

LOCK PRIORITY+10

Related Keywords
PRIORITY real-valued function
REACT program instruction
REACTI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 333

MAX real-valued function

MAX real-valued function

Syntax

MAX (value, ..., value)

Function

Return the maximum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the largest value, and that value is returned by the
function.

The sign of each value is considered. Thus, for example, the value -10 is considered larger
than -100.
Example
The program instruction:
max.value = MAX(x, y, z, 0)
sets max.value to the largest value of the variables x, y, and z, or to zero if all three

variables have values less than zero.

Related Keyword

MIN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 334

MC program instruction

MC program instruction

Syntax

MC monitor_command

Function

Introduce a monitor command within a command program.

Usage Considerations

The MC instruction can be contained only within a command program. (Command programs
can contain only MCinstructions, blank lines, and comment lines.)

Parameter

monitor_command Any valid eV+ monitor command.

Details

Command programs are created using one of the eV+ editors. To indicate to the editor that a
command program, rather than a normal program, is being created, every operation line of a
command program must begin with the letters MC (that is, for Monitor Command follows)
followed by one or more spaces. As with regular application programs, command programs
can contain blank lines and comment lines to add clarity.

Every nonblank line of a command program must contain a monitor command (or a
comment). Monitor commands and program instructions cannot be mixed. Program
instructions can be included, however, by using the DO command. That is, to include an
instruction in a command program, you can type a line with the form mc do instruction. See
the eV+ Operating System Reference Guide for details on monitor commands.

Example

The following command program loads disk files, prepares for execution of a program, and
begins the execution. Note that a DO command is used to include a MOVE instruction:

1 .PROGRAM setup ()

2 MC LOAD C:project

3 MC LOAD B:project.lc
4 MC SPEED 50

5 MC DO MOVE safe.loc

6 MC EXECUTE motion, -1
7 .END

Related Keywords

COMMANDS monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 335

MC program instruction

MCS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 336

MCS program instruction

MCS program instruction

Syntax
MCS string

Function

Invoke a monitor command from an application program.

Parameter

string String value, variable, or expression that defines one of the eV+ monitor
commands listed below.

Details

Normally, monitor commands can be invoked only from the system terminal or from
command programs (which contain only monitor commands). The MCS instruction can be
used to invoke the following monitor commands from an application program:

DELETE DELETEL DELETEM DELETEP DELETER
DELETES FCOPY LOAD STORE STOREL
STOREM STOREP STORER STORES VRENAME

Using these commands, an application program can store, load, and copy programs to and
from disk, and also delete programs from memory to make room for other programs.
Similarly, variables can be deleted from memory when they are no longer needed. Also,
vision prototypes can be renamed.Loading, storing, and deleting programs and global
variables is not interlocked for multi-task access in eV+. Therefore, if you are incorporating
multiple MCS instructions in a program, you will need to use TAS interlocks to prevent
multiple tasks from issuing the instructions. For details, see the TAS program instruction.

NOTE:If the monitor command specified in the string parameter contains a blank
program context (that is, it contains @), any variables listed in the command are treated
as though they are referenced within the program containing the MCS instruction. (See
the

eV+ Language User's Guide for more information on program context.)

Program execution is not stopped if an error occurs while processing the monitor command.
The ERROR real-valued function can be used after the MCS instruction to check for the
occurrence of an error.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 337

MCS program instruction

NOTE: If a DELETE_ command is used within a subroutine to delete one of the subroutine
parameters (that is, one of the variables in the .PROGRAM statement), the variable is not
deleted and no error condition is recorded.

Normal output by the monitor command to the system terminal is done if the MCS.MESSAGE
system switch is enabled. For example, the LOAD command outputs the .PROGRAM lines
from each program loaded. (The MCS.MESSAGE switch is normally disabled.)

If the FCOPY option is used, logical units 5 (disk #1) and 6 (disk #2) must be available. If
LOAD or STORE_ is used, logical unit # 5 must be available.

Example

The following program loads a disk file, executes the program in the file, and deletes the
program from the system memory. Another program file is then loaded into memory and
executed. (Although this simple example can also be implemented with a command program,
the following demonstrates use of the MCS instruction in a normal program.)

.PROGRAM admin ()
MCS "LOAD C:setup"
CALL setup
MCS "DELETEP setup"
MCS "LOAD C:demo_1"
CALL demo _main

.END

Related Keywords
ERROR real-valued function

MC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 338

MESSAGES system switch

MESSAGES system switch

Syntax
... MESSAGES

Function

Enable or disable output to the system terminal from TYPE instructions.

Details

If this switch is enabled, output from TYPE instructions is displayed on the system terminal.
Otherwise, output is suppressed.

By default, this switch is enabled, allowing output to occur.

Related Keywords
DISABLE monitor command
DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 339

$MID string function

$MID string function

Syntax

$MID (string, first_char, num_chars)

Function

Return a substring of the specified string.

Parameters
string String variable, constant, or expression from which the substring is
extracted.
first_char Optional real-valued expression that specifies the first character of
the substring.

num_chars Real-valued expression that specifies the number of characters to be
copied to the substring.

Details

If first_char is omitted or has a value less than or equal to 1, the substring starts with the
first character of string. If first_char is larger than the length of the input string, the
function returns an empty string.

If there are fewer than num_chars characters from the specified starting character position
to the end of the input string, the output string consists of only the characters up to the end
of the input string. That is, no error results and the output string is not extended to the
requested length.

Example

The instructions below result in the string variable $substring containing the string cd, since
cd is the 2-character string that starts at character position 3 of the string abcde contained in
the string variable $string:

$string = "abcdef"
$substring = $MID($string, 3, 2)
Related Keyword

$UNPACK string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 340

MIN real-valued function

MIN real-valued function

Syntax

MIN (value, ..., value)

Function

Return the minimum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the smallest value, and that value is returned by the
function.

The sign of each value is considered. Thus, for example, the value -100 is considered smaller
than -10.

Example
The program instruction:

min.value = MIN(1000, x, vy, z)

sets min.value to the smallest value of the variables x, y, and z, or to the value 1000 if all
three variables have values greater than 1000.

Related Keyword

MAX real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 341

MMPS keyword

MMPS keyword

Syntax
SPEED value MMPS ALWAYS

Function

Specify the units for a SPEED instruction as millimeters per second.

NOTE: To specify units in inches per second, use the IPS conversion factor.

Usage Considerations
MMPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot motion
occurs.

Speeds specified with the MMPS parameter apply to straight-line motions. Joint-interpolated
motions do not maintain the specified tool speed.
Details

This is an optional parameter for the SPEED program instruction, which specifies the units to
be used for the speed value. That is, when MMPS is specified in a SPEED instruction, the
speed value is interpreted as millimeters/second (for straight-line motions).

See the description of the SPEED program instruction for further details on setting motion
speeds with the IPS conversion factor.
Example

Set the default program speed for straight-line motions to 10 millimeters per second
(assuming the monitor speed is set to 100):

SPEED 10 MMPS ALWAYS

Related Keywords
IPS keyword

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 342

MOD operator

MOD operator

Syntax

... value MOD value ...

Function

Compute the modulus of two values.

Details

The MOD operator operates on two values, resulting in a value that is the remainder after
dividing the first value by the second value. (The second value cannot be zero.)

For details on how operators are evaluated within expressions, see the Order of Evaluation.

Examples
Return 1 (5/2 is 2 with a remainder of 1):

5 MOD 2

Return 0 (81/27 is 3 with a remainder of 0):

81 MOD 27

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 343

MOVE and MOVES program instruction

MOVE and MOVES program instruction

Syntax
MOVE location
MOVES location

Function

Initiate a robot motion to the position and orientation described by the given location.

Usage Considerations
MOVE causes a joint-interpolated motion.

MOVES causes a straight-line motion, during which no changes in configuration are
permitted.

These instructions can be executed by any program task as long as the task has attached a
robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Parameter

location Transformation, precision point, location function, or compound
transformation that specifies the destination to which the robot is to
move.

Details

The MOVE instruction causes a joint-interpolated motion. That is, intermediate set points
between the initial and final robot locations are computed by interpolating between the initial
and final joint positions. Any changes in configuration requested by the program (for
example, by a LEFTY instruction) are executed during the motion.

The MOVES instruction causes a straight-line motion. During such a motion the tool is
moved along a straight-line path and is smoothly rotated to its final orientation. No changes
in configuration are allowed during straight-line motions.

Examples

MOVE #pick Move by joint-interpolated motion to the location described by
the precision point # pick.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 344

MOVE and MOVES program instruction

MOVES ref:place Move along a straight-line path to the location described by the
compound transformation ref:place.

Related Keywords
APPRO program instruction
APPROS program instruction
DEPART program instruction
DEPARTS program instruction
MOVEC program instruction
MOVEF program instruction
MOVESF program instruction
MOVET program instruction
MOVEST program instruction
SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 345

MOVEC program instruction

MOVEC program instruction

Syntax
MOVEC(angle, turn) location1, location2

MOVEC(angle, turn) center

Function

Initiate a circular/arc-path robot motion using the positions and orientations described by
the given locations.

Usage Considerations

This instruction can be executed by any program task as long as the task has attached a
robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this instruction causes an
error.

Parameters

angle Real-valued expression that specifies the angle of the arc in degrees.
This parameter is optional if location2 is specified. angle can be a
positive or negative number but must be within [-360, +360].

turn Optional boolean expression that specifies whether the tool should
rotate with the arc. If turn is omitted or zero, then the tool orientation
will stay constant with a MOVEC(angle) center syntax and end at the
orientation of /ocation2 for a MOVEC location1, location2 syntax. If
turn is non-zero, the tool orientation will be rotated by the angle of the
arc around the axis of the circle and maintain a constant orientation
relative to the trajectory. This is useful for dispensing applications.

center Transformation, precision point, location function, or compound
transformation that specifies the center of the circle.

locationl Transformation, precision point, location function, or compound
transformation that specifies an intermediate location on the circle/arc
through which the robot is to move.

location2 Optional transformation, precision point, location function, or
compound transformation that specifies the end-point of the circle/arc
to which the robot is to move. If this parameter is not supplied, then
angle must be specified.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 346

MOVEC program instruction

Details

MOVEC(angle,turn) location1, location2

This MOVEC program instruction syntax is designed to create a circle/arc path that starts
from the current robot position or, in case of Continuous Path, the current robot destination,
and ends at a location defined by /ocation2. The intermediate location (/ocation1) is used to
define the plane of the circle and the angle of the arc. See the following figure.

Location2

Location1

Start

MOVEC with Location1 and Location2

If the three points are aligned or two of them coincide, MOVEC will cause a straight-line
motion instead of creating a circle or arc.

With this syntax, the orientation of location1 is not used.

If angle is specified then the robot will move by angle degrees and not necessarily end up at
location2. In other words, the angle has higher priority than location2 in defining the final
position.

When angle is specified, the orientation of locationZ2 is ignored. The final orientation is
determined entirely by the turn parameter: if it is omitted or zero, then the final orientation
will be the orientation of the start position; if turn is non-zero, then the final orientation is the
one of the start position rotated by angle around the axis of the arc.

When turn is non-zero, MOVEC will generate an *invalid orientation* error for 4-axis robots
(like the Cobra and Quattro robots, or Python linear modules) if the plane of the circle is not
parallel to the XY plane of the Tool Center Point.

As with straight-line motion, circular motion is compatible with multi-turn rotation. This
means that if location2 is a precision point, the multi-turn joint can rotate more than 360
degrees.

MOVEC(angle,turn) center

This MOVEC program instruction syntax is designed to create a circle/arc path that starts
from the current robot position or, in case of Continuous Path, the current robot destination.
The path is centered around the center location; the end location is specified with angle
degrees.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 347

MOVEC program instruction

The plane of the circle is defined as the plane passing through the start position and parallel
to the XY plane of the center location. In other words, if the Z-orientation of the center
location is not perpendicular to the straight line passing through center and the start
position, then the center of the circle is not the location center; rather, it is the intersection
of the Z-axis of center and a plane that is perpendicular to this axis and passes through the
start position.

After the actual center of the circle is defined, the radius of the circle is simply the distance
from the start position to the actual center.

N | _— start_pos

MOVEC with Angle and Center

Examples
The following example shows MOVEC being used with transformations.

MOVEC locl, 1loc2

Continuous Path Example

The following example shows MOVEC being used with Continuous Path. Also, see the
following figure.

MOVES pl

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 348

MOVEC program instruction

MOVEC p2, p3
MOVES p4
BREAK

3
P p4

p2

Start

MOVEC Combined with Continuous Path

Full Circle Example

The following example shows MOVEC being used to create a full circle with an Cobra 600
robot.

SET center = TRANS(300,0,210,90,30,0)
SET start pos = TRANS (420, 0, 210, 0, 180, 0)

MOVES start pos
BREAK

; Do a full circle
MOVEC (360) center
BREAK

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 349

MOVEC program instruction

MOVEC Creating a Full Circle.

NOTE: In the previous figure, note that "MOVEC(360,1) center" would have returned an
invalid orientation error because the Cobra robot cannot maintain a constant
orientation relative to a non-horizontal circle.

Half Circle Examples

The following example shows MOVEC being used to create a half circle with rotating
orientation for dispensing with an Viper 650.

SET center = TRANS(300,0,250,0,-150,0)
SET start pos = center:TRANS(0,0,0,-90):TRANS (100,,,,-30)

MOVES start pos
BREAK

; Do a half circle with rotating orientation
MOVEC (180, TRUE) center
BREAK

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 350

MOVEC program instruction

MOVEC Creating a Half Circle with rotating orientation (e.g. the "turn”
parameter is set).

By changing the last 3 lines of the code, the example can be modified to create the same
motion but without rotating the orientation, as follows:

; Same motion without rotating the orientation
MOVEC (180) center
BREAK

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 351

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 352

MOVEC program instruction

MOVEC Creating a Half Circle with constant orientation (e.g. the "turn”
parameter is omitted).

Related Keywords
APPRO program instruction
APPROS program instruction
DEPART program instruction
DEPARTS program instruction
MOVE program instruction
MOVES program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 353

MULTIPLE program instruction

MULTIPLE program instruction

Syntax
MULTIPLE ALWAYS

Function

Allow full rotations of the robot wrist joints.

Usage Considerations
Only the next robot motion is affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. MULTIPLE ALWAYS is assumed whenever
program execution is initiated and when a new execution cycle begins.

The MULTIPLE instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the MULTIPLE instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes MULTIPLE as the default condition.
That is, if ALWAYS is specified, MULTIPLE will remain in effect
continuously until disabled by a SINGLE instruction. If ALWAYS is not
specified, the MULTIPLE instruction applies only to the next robot
motion.

Details

While MULTIPLE is in effect, full rotations of the wrist joints are used, as required, during
motion planning and execution.

The MULTIPLE setting is ignored if NOOVERLAP is in effect.

Related Keywords
CONFIG real-valued function
NOOVERLAP program instruction
OVERLAP program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 354

MULTIPLE program instruction

SINGLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 355

NETWORK real-valued function

NETWORK real-valued function

Syntax

NETWORK (component, code)

Function

Return network status and IP address information
Parameters

component Real-valued expression that identifies the component of the
network that is of interest.

1 =TCP
3 =FTP
code Real-valued expression that further identifies the information

desired. This value is only used for TCP:

0 = Return status value as described later (default).
1 = Return AD1*256 + AD2
2 = Return AD3*256 + AD4
3 = Return NM1*256 + NM2
4 = Return NM3*256 + NM4

11 = Return AD1
12 = Return AD2
13 = Return AD3
14 = Return AD4
15 = Return NM1
16 = Return NM2
17 = Return NM3
18 = Return NM4

where ADn is the nth byte of the IP address and NMn is the nth byte
of the Network Mask

Details

This function returns one of the following values if status is requested (that is, if the code
argument is omitted or set to 0):

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 356

NETWORK real-valued function

Value Meaning
0 Hardware not present, or license not installed
-1 Hardware present and license detected
1 Driveris running

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 357

NEXT program instruction

NEXT program instruction

Syntax

NEXT count

Function

Branch to the END statement of the nth nested loop, perform the loop test, and loop if
appropriate.

Usage Considerations

This instruction can be used with the FOR, WHILE, and DO control structures.

Parameter

count Optional integer specifying the number of nested structures to branch
to the END of (expressions and variables are not acceptable).

Details

When a NEXT instruction is processed with count = 1, execution continues at the END of the
control structure. If count > 1, execution continues at the END of count number of nested
control structures.

Example

If error = 1, branch to the END of the innermost control structure. If error = 2, branch to the
END of the outermost control structure:

45 FOR i =1 to 20

46 FOR j = 1 to 10

47 FOR k = 10 to 50

48 IF error == 1 THEN

49 NEXT ;branch to step 54
50 END

51 IF error == 2 THEN

52 NEXT 3 ;branch to step 56
53 END

54 END

55 END

56 END

57

Related Keywords

DO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 358

NEXT program instruction

EXIT program instruction
FOR program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 359

NOFLIP program instruction

NOFLIP program instruction

Syntax
NOFLIP

Function

Request a change in the robot configuration during the next motion so that the pitch angle
of the robot wrist has a positive value.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a no-flip configuration, this instruction is ignored by
the robot.

The NOFLIP instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the NOFLIP instruction
causes an error.

For more details, see the description of the FLIP program instruction.

Related Keywords
CONFIG real-valued function
FLIP program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 360

NONULL program instruction

NONULL program instruction

Syntax
NONULL ALWAYS

Function

Instruct the eV+ system not to wait for position errors to be nulled at the end of continuous-
path motions.

Usage Considerations
Only the next robot motion is affected if the ALWAYS parameter is not specified.

NULL ALWAYS is assumed whenever program execution is initiated and when a new
execution cycle begins.

The NONULL instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the NONULL instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes NONULL as the default condition.
That is, when ALWAYS is included in a NONULL instruction, NONULL
remains in effect continuously until disabled by a NULL instruction. If
ALWAYS is not specified, the NONULL instruction applies only to the
next robot motion.

Details

When NONULL is in effect and a BREAK in the robot motion occurs, eV+ does not wait for the
servos to signal that all moving joints have reached their specified positions before it begins
the next motion. That is, at the end of the allotted time, eV+ assumes that the joints have
all reached their final positions and starts commanding the next motion.

Like COARSE mode, this mode allows faster motion if high final-position accuracy is not
required. However, since no position-error checking is done, large position errors can occur.
Related Keywords

COARSE program instruction

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 361

NONULL program instruction

DELAY.IN.TOL program instruction
FINE program instruction

NULL program instruction

SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 362

NOOVERLAP program instruction

NOOVERLAP program instruction

Syntax
NOOVERLAP ALWAYS

Function

Generate a program error if a subsequent motion is planned that causes a selected multi-
turn axis to move more than £180 degrees to avoid a limit stop.

Usage Considerations

NOOVERLAP applies to the operation of the following robots/joints:
« For Viper and PUMA robots: joints 1, 4, and the final joint
« For all SCARA robots: joint 4
« For Quattro robots: tool rotation

OVERLAP ALWAYS is assumed whenever program execution is initiated and when a new
execution cycle begins.

The NOOVERLAP instruction can be executed by any program task as long as the robot
selected by the task is not attached by any other task. The instruction applies to the robot
selected by the task.

If the eV+ system is not configured to control a robot, executing the NOOVERLAP instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes NOOVERLAP as the default condition.
That is, if ALWAYS is specified, NOOVERLAP remains in effect
continuously until disabled by an OVERLAP instruction. If ALWAYS is not
specified, the NOOVERLAP instruction applies only to the next robot
motion.

Details

When NOOVERLAP is set, and the transformation destination of a joint-interpolated or
straight-line motion requires that a multiple-turn axis rotate more than £180 degrees to
avoid a limit stop, a program error will occur (and the motion will not be performed). If the
destination is specified as a precision point, this test is not performed.

In general, given a transformation destination, a multiple-turn axis normally attempts to
move to a new position by moving in the direction that requires less than 180 degrees of

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 363

NOOVERLAP program instruction

motion. The only conditions that force an axis to make a larger change are if SINGLE is
specified, or if a software limit stop would be violated.

When NOOVERLAP is set, the setting of SINGLE or MULTIPLE mode is ignored.

As with other user program errors, the error condition generated as a result of the
NOOVERLAP test can be trapped by a standard REACTE subroutine if desired.

Related Keywords
MULTIPLE program instruction
OVERLAP program instruction
SELECT program instruction
SELECT real-valued function

SINGLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 364

NORMAL transformation function

NORMAL transformation function

Syntax

NORMAL (transformation_value)

Function

Correct a transformation for any mathematical round-off errors.

Usage Considerations

For most robot programs, transformation normalizing never has to be performed.

Parameter

transformation_value Transformation, transformation valued function, or
compound transformation whose value is to be
normalized.

Details

Use this function after a lengthy series of computations that modifies a transformation
value. For instance, a procedural motion that incrementally changes the orientation of a
transformation should occasionally normalize the resultant value. Within a transformation,
the orientation of the robot is represented by three perpendicular unit vectors. Because of
the small inaccuracies that occur in computer computations, after being incrementally
modified many times, these vectors can become nonperpendicular or not of unit length.

The NORMAL function returns a transformation value that is essentially the same as the
input argument but has the orientation portion of the value corrected for any small buildup
of computational errors that may have occurred.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 365

NOT operator

NOT operator

Syntax

.. NOT value ...

Function

Perform logical negation of a value.

Usage Considerations

The word "not" cannot be used as a program name or variable name.

Details

The NOT operator operates on a single value, converting it from logically true to false, and
vice versa. If the single value is zero, a -1.0 (TRUE) is returned. Otherwise, a 0.0 (FALSE)

value is returned.

Refer to the eV+ Language User's Guide for the order in which operators are evaluated

within expressions.

Examples
IF NOT initialized THEN ;If the variable "initialized"
a
CALL appl.setup() ; FALSE value, the instructions in
the
initialized = TRUE ;IF structure will be executed.
END

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 366

NOT.CALIBRATED system parameter

NOT.CALIBRATED system parameter

Syntax
... NOT.CALIBRATED

Function

Indicate (or assert) the calibration status of the robots connected to the system.

Usage Considerations

The current value of the NOT.CALIBRATED parameter can be determined with the
PARAMETER monitor command or real-valued function.

You can modify the value of this parameter at any time; refer to the next section for details.

The parameter name can be abbreviated.

Details

The value of this parameter, which can range from -1 to 32767, should be interpreted as a
bit mask. Bits 1 through 15 correspond to robots 1 through 15, respectively. For example,
the following values have the following interpretations:

p‘a’:a:l:e‘t):r Interpretation
0 All robots are calibrated.
1 Robot 1 is not calibrated.
3 Robots 1 and 2 are not calibrated.
7 Robots 1 through 3 are not calibrated.

On power-up, this parameter is set to indicate that all installed robots are not calibrated. If a
robot is not connected or not defined, its NOT.CALIBRATED bit is always off.

The CALIBRATE command and instruction attempt to calibrate any enabled ROBOT that has
its NOT.CALIBRATED bit set.

When the calibration operation completes, the NOT.CALIBRATEAd bits are updated as
appropriate. For example, consider a system that has only one robot installed. If the
CALIBRATE command is issued, and it succeeds, NOT.CALIBRATED is set to 0. If three robots
are connected, and the CALIBRATE command succeeds in calibrating robots 1 and 2, but not
robot 3, NOT.CALIBRATED is set to 4 (binary 100-robots 1 and 2 calibrated, 3 not calibrated).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 367

NOT.CALIBRATED system parameter

The purpose of this parameter is to allow one of the bits to be set to force the corresponding
robot to be calibrated the next time a CALIBRATE command or instruction is executed. This
parameter can also be used to determine the calibration status of the robot(s).

The parameter value can be changed at any time. The following rules describe how a new
asserted value is treated:

. Ifthe new value asserts that a robot is not calibrated, the eV+ system behaves as if
the robot is not calibrated whether or not the servo software believes that the robot is
not calibrated.

« Ifthe new value asserts that a robot is calibrated, the servo software is checked and
eV+ tracks the calibrated/not calibrated state indicated by the servo software for that
robot.

NOTE:It is usually not meaningful to use PARAMETER NOT.CALIBRATED to clear a bit.

Examples
Mark all installed robots as uncalibrated:

PARAMETER NOT.CALIBRATED = -1

Mark only robots 1 and 2 as uncalibrated:

PARAMETER NOT.CALIBRATED = 3

Related Keywords
CALIBRATE monitor command
CALIBRATE program instruction
PARAMETER monitor command
PARAMETER program instruction
PARAMETER real-valued function
ROBOT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 368

NULL program instruction

NULL program instruction

Syntax
NULL ALWAYS

Function

Instruct the eV+ system to wait for position errors to be nulled at the end of continuous path
motions.

Usage Considerations
Only the next robot motion is affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. NULL ALWAYS is assumed whenever program
execution is initiated and when a new execution cycle begins.

The NULL instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the NULL instruction causes
an error.

The word "null" cannot be used as a program name or variable name.

Parameter

ALWAYS Optional qualifier that establishes NULL as the default condition. That is,
if ALWAYS is specified, NULL remains in effect continuously until
disabled by a NONULL instruction. If ALWAYS is not specified, the NULL
instruction applies only to the next robot motion.

Details

When NULL is in effect and a BREAK in the robot motion occurs, eV+ waits for the servos to
signal that all moving joints have reached their specified positions before it begins the next
motion. The accuracy to which the electronics verify that all joints have reached their
destination positions is determined by the COARSE and FINE program instructions.

Related Keywords
COARSE program instruction
DELAY.IN.TOL program instruction

FINE program instruction

NONULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 369

NULL program instruction

NULL program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 370

NULL transformation function

NULL transformation function

Syntax
NULL

Function

Return a null transformation value-one with all zero components.

Usage Considerations

The word "null" cannot be used as a program name or variable name.

Details

A null transformation corresponds to a null vector (X =Y = Z = 0) and no rotation (yaw =
pitch = roll = 0). Such a transformation is useful, for example, with a SHIFT function to
create a transformation representing a translation with no rotation.

Example

Define a new transformation (new.loc) to be the result of shifting an existing transformation
(old.loc) in the World coordinate directions.

new.loc = SHIFT (NULL BY x.shift,y.shift,z.shift):0ld.loc

Determine the length of the vector described by the transformation test.loc.

dist = DISTANCE (NULL, test.loc)

Related Keywords
CONFIG real-valued function

NULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 371

OFF real-valued function

OFF real-valued function

Syntax
OFF

Function

Return the value used by eV+ to represent a logical false result.

Usage Considerations

The word "off" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to be specified.
The value returnedis 0.

This function is equivalent to the FALSE function.

Related Keywords
FALSE real-valued function

ON real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 372

ON real-valued function

ON real-valued function

Syntax
ON

Function

Return the value used by eV+ to represent a logical true result.

Usage Considerations

The word "on" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to be specified.
The value returnedis -1.

This function is equivalent to the TRUE function.

Related Keywords
OFF real-valued function

TRUE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 373

OPEN program instruction

OPEN program instruction

Syntax
OPEN
OPENI

Function

Open the robot gripper.

Usage Considerations
OPEN causes the hand to open during the next robot motion.

OPENI causes a BREAK in the current continuous-path motion and causes the hand to open
immediately after the current motion completes.

The OPEN instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The OPENI instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details
These instructions cause the control valves for the pneumatic hand to receive a signal to
open. If the OPEN instruction is used, the signal is sent when the next robot motion begins.

NOTE: You can use the Robot Configuration Utility program to set the digital signals that
control the pneumatic hand. The utility program is on the Utility Disk. See the manual
Instructions for Adept Utility Programs for information on use of the program.

The OPENI instruction differs from OPEN in the following ways:

« ABREAK occurs if a continuous-path robot motion is in progress.

« Thesignalis sent to the control valves at the conclusion of the current motion or
immediately if no motion is in progress.

« Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 374

OPEN program instruction

Examples
During the next robot motion, cause the pneumatic control valves to assume the open state:

OPEN

Cause the pneumatic control valves to assume the open state at the conclusion of the
current motion:

OPENI

Related Keywords
CLOSE program instruction
CLOSETI program instruction
HAND.TIME system parameter
RELAX program instruction
RELAXI program instruction
SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 375

OR operator

OR operator

Syntax

... value OR value ...

Function

Perform the logical OR operation on two values.

Details

The OR operator operates on two values, resulting in their logical OR combination. For
example, during the OR operation

c=aORb

the following four situations can occur:

a b c
FALSE FALSE -> FALSE
FALSE TRUE -> TRUE
TRUE FALSE -> TRUE
TRUE TRUE -> TRUE

That is, the result is TRUE if either (or both) of the two operand values is logically TRUE. To
review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Example

In the following sequence, the instructions immediately following the IF instruction are
executed if either ready is TRUE (that is, nonzero) or count equals 1. The instructions are not
executed if both ready is FALSE and count is not equal to 1.

IF ready OR (count == 1) THEN

END

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 376

OR operator

Related Keywords
AND operator
BOR operator
XOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 377

OUTSIDE real-valued function

OUTSIDE real-valued function

Syntax
OUTSIDE (low, test, high)

Function

Test a value to see if it is outside a specified range.

Parameters

low Real value, expression, or variable specifying the lower limit of the range
to be tested.

test Real value, expression, or variable to test against the range.

high Real value, expression, or variable specifying the upper limit of the
range to be tested.

Details

Returns TRUE (-1) if test is less than low or greater than high. Returns FALSE (0)
otherwise.

Related Keywords

MAX real-valued function

MIN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 378

OVERLAP program instruction

OVERLAP program instruction

Syntax
OVERLAP ALWAYS

Function

Disable the NOOVERLAP limit-error checking either for the next motion or for all subsequent
motions.

Usage Considerations

OVERLAP applies to the operation of the following robots/joints:
« For Viper and PUMA robots: joints 1, 4, and the final joint
« For all SCARA robots: joint 4
« For Quattro robots: tool rotation

This is the default state of the eV+ system. OVERLAP ALWAYS is assumed whenever
program execution is initiated and when a new execution cycle begins.

The OVERLAP instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the OVERLAP instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes OVERLAP as the default condition.
That is, if ALWAYS is specified, OVERLAP remains in effect continuously
until disabled by a NOOVERLAP instruction. If ALWAYS is not specified,
the OVERLAP instruction applies only to the next robot motion.

Details
If OVERLAP is specified, the settings of SINGLE and MULTIPLE affect the robot motion.

When OVERLAP is set, and the transformation destination of a joint-interpolated or straight-
line motion requires that a multiple-turn axis rotate more than £180 degrees, the motion is
executed without generating a program error.

OVERLAP disables the limit-error checking of NOOVERLAP. The OVERLAP setting is applied
whenever program execution is initiated and when a new execution cycle begins.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 379

OVERLAP program instruction

Related Keywords
MULTIPLE program instruction
NOOVERLAP program instruction
SELECT program instruction
SELECT real-valued function
SINGLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 380

PACK program instruction

PACK program instruction

Syntax

PACK string_array[index], first_char, num_chars = string

PACK string_var, first_char, num_chars = string

Function

Replace a substring within an array of (128-character) string variables, or within a
(nonarray) string variable.

Parameters

string_array

index

string_var

first_char

num_chars

string

String array variable that is modified by the substring on the
right-hand side of the equal sign. Each element within the string
array is assumed to be 128 characters long (see below).

Optional integer value that identifies the first array element to be
considered. The first_char value is interpreted relative to the
element specified by this index. If no index is specified, element
zero is assumed.

String variable that is modified by the substring on the right-
hand side of the equal sign.

Real-valued expression that specifies the position of the first
character of the substring within the string array. A value of 1
corresponds to the first character of the specified string array
element. This value must be greater than zero.

The value of first_char can be greater than 128. In that case
the array element accessed follows the element specified in the
function call. For example, a value of 130 corresponds to the
second character in the array element following that specified by
index.

Real-valued expression that specifies the number of characters
to be copied from the string to the array. This value can range
from 0 to 128.

String variable, constant, or expression from which the substring
is to be extracted. The string must be at least num_chars long.

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 381

PACK program instruction

Details

This instruction replaces a substring within an array of strings or within a string variable.
When an array of strings is being modified, the substring is permitted to overlap two elements
of the string array. For example, a 10-character substring whose first character is to replace
the 127th character in element [3] supersedes the last two characters in element [3] and
the first eight characters of element [4].

If the array element to be modified is not defined, the element is created and filled with ASCII
NUL characters (“H0O) up to the specified start of the substring. Similarly, if the array
element to be modified is too short, the string is padded with ASCII NUL characters to the
start of the substring.

In order to efficiently access the string array, this function assumes that all of the array
elements, from the start of the array until the element before the element accessed, are
defined and are 128 characters long. For multidimensional arrays, only the right-most array
index is incremented to locate the substring. Thus, for example, element [2,3] is followed by
element [2,4].

When a string variable is modified, the replacement is done in a manner similar to that for an
individual array element. However, an error results if the operation causes the string to be
longer than 128 characters.

Example

The instruction below replaces 11 characters within the string array $list[]. The replacement
is specified as starting in array element $list[3]. However, since the first character replaced is
to be number 130, the 11-character substring actually replaces the second through 12th
characters of $list[4].

PACK $1ist[3], 130, 11 = $string

Related Keywords
$MID string function
$UNPACK string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 382

PANIC program instruction

PANIC program instruction

Syntax
PANIC

Function

Simulate an external E-Stop or panic button press; stop all robots immediately, but do not
turn off HIGH POWER.

Usage Considerations
If the eV+ system is controlling more than one robot, all the robots are stopped.

This instruction has no effect on nonrobot systems.

Details
This instruction performs the following actions:
« Immediately stops robot motion

« Stops execution of the robot control program if the robot is attached and no REACTE
has been executed to enable program processing of error.

« Causes *PANIC command* to appear on the monitor screen

Unlike pressing the emergency stop button on the pendant, high power is left turned on
after a PANIC instruction is processed.

Related Keywords
ABORT monitor command
ABORT program instruction
ESTOP program instruction
ESTOP monitor command

PANIC monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 383

PARAMETER program instruction

PARAMETER program instruction

Syntax
PARAMETER parameter_name = value

PARAMETER parameter_name[index] = value

Function

Set the value of a system parameter.

Usage Considerations

If the specified parameter accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the parameter array are assigned the value given.

Parameters
parameter_name Name of the parameter whose value is to be modified.

index For parameters that can be qualified by an index, this is an
optional real value, variable, or expression that specifies the
specific parameter element of interest (see above).

value Real value, variable, or expression defining the value to be
assigned to the system parameter.

Details

This instruction sets the given system parameter to the value on the right. The parameter
name can be abbreviated to the minimum length that identifies it uniquely.

NOTE: A regular assignment statement cannot be used to set the value of a system
parameter.

The parameter names acceptable with the standard eV+ system are summarized in the
section Parameters in the eV+ Language User's Guide.

Other system parameters are available when options are installed. Refer to the option
documentation for details. For example, the parameters associated with the AdeptVision
options are described in the section Descriptions of Vision Keywords in the AdeptVision
Reference Guide.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 384

PARAMETER program instruction

Example
Set the TERMINAL system parameter to 4:

PARAMETER TERMINAL = 4

Related Keywords

BELT.MODE system parameter
HAND.TIME system parameter
NOT.CALIBRATED system parameter
PARAMETER monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 385

PARAMETER real-valued function

PARAMETER real-valued function

Syntax
PARAMETER (parameter_name)
PARAMETER (parameter_name[index])

Function

Return the current setting of the named system parameter.

Parameters

parameter_name Name of the system parameter whose value is to be
returned.

index For parameters that can be qualified by an index, thisis a
(required) real value, variable, or expression that specifies
the specific parameter element of interest.

Details

This function returns the current setting of the given system parameter. The parameter
name can be abbreviated to the minimum length that identifies it uniquely.

Other system parameters are available when options are installed. Refer to the option
documentation for details. For example, the parameters associated with the AdeptVision
options are described in the section Descriptions of Vision Keywords in the AdeptVision
Reference Guide.

Examples

The following example illustrates how the current setting of the TERMINAL parameter can be
displayed on the system terminal during program execution:

TYPE "The TERMINAL parameter is set to", PARAMETER (TERMINAL)

The PARAMETER function can also be used in any expression to include the value of a
parameter. For example, the following program statement can be used to increase the time
delay for hand actuation:

PARAMETER HAND.TIME = PARAMETER (HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and the right-
hand occurrence is the function name.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 386

PARAMETER real-valued function

Related Keywords

BELT.MODE system parameter
HAND.TIME system parameter
NOT.CALIBRATED system parameter
PARAMETER monitor command
PARAMETER program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 387

PAUSE program instruction

PAUSE program instruction

Syntax
PAUSE

Function

Stop program execution but allow the program to be resumed.

Usage Considerations

Unlike HALT and STOP, the PAUSE instruction does not force FCLOSE or DETACH on the disk
or serial communication logical units. If the program has a file open and you decide not to
continue execution of the current program, you should issue a KILL command (with the
appropriate task number) to close all files and detach all logical units.

Details

Causes a BREAK and terminates execution of the application program, displaying the
message (PAUSED). Execution can subsequently be continued by typing proceed and the
appropriate task number, and pressing the RETURN key.

When debugging a program, a PAUSE instruction can be inserted to stop program execution
temporarily while the values of variables are checked.

NOTE: Any robot motion in progress when a PAUSE instruction is processed completes
normally.

Related Keywords
HALT program instruction
KILL monitor command

KILL program instruction
PROCEED monitor command

STOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 388

#PDEST precision-point function

#PDEST precision-point function

Syntax
#PDEST

Function

Return a precision-point value representing the planned destination location for the current
robot motion.

Usage Considerations

The #PDEST function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the #PDEST function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

The name "pdest" cannot be used for a variable or a program.

Details

The #PDEST function can be used to determine the robot's destination before its motion was
interrupted.

The #PDEST function is equivalent to the DEST transformation function and can be used
interchangeably with DEST, depending upon the type of location information that is desired.
Please refer to the description of the DEST function for more information on the use of both
the #PDEST and DEST functions.

Related Keywords
DEST transformation function
HERE transformation function
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 389

PDNT.CLEAR program instruction

PDNT.CLEAR program instruction

Syntax
PDNT.CLEAR

Function

Clears the current notification window or custom message window on the T20 pendant, if
any, and returns the T20 pendant back to the Home screen.

Usage Considerations

Parameters

None

Details

None

Example
The following code:

PDNT.CLEAR

Clears the screen on the T20 pendant.

Related Keywords
PDNT.WRITE program instruction
PDNT.NOTIFY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 390

PDNT.NOTIFY program instruction

PDNT.NOTIFY program instruction

Syntax
PDNT.NOTIFY stitle, $msg

Function

Creates a pendant notification.

Usage Considerations

The pendant does not need to be attached using an ATTACH instruction prior to using this
function.

Parameters

$title Optional string constant, variable, or expression that contains the title
of the pendant notification.

$msg Optional string constant, variable, or expression that contains the
message of pendant notification.

Details

PDNT.NOTIFY is used to create a simple notification box on the T20 Pendant screen that can
be cleared by pressing the OK or Cancel buttons on the pendant or with a eV+call to
PDNT.CLEAR.

Example
The following code:

PDNT.NOTIFY “Manual Mode”, “To enable power, press and hold the
enable switch.”

Creates the screen:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 391

PDNT.NOTIFY program instruction

Manual Made

COMP

To enable power, press and hold the
enable switch.

Ll
-
O
=
D
O
—

Disp Loc I/O | Next >

Related Keywords
PDNT.WRITE program instruction
PDNT.CLEAR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 392

PDNT.WRITE program instruction

PDNT.WRITE program instruction

Syntax

PDNT.WRITE (msgsize) $title, $msg, $f1, $f2, $f3, $f4

Function

Sets the pendant's Custom Message screen.

Usage Considerations

The pendant does not need to be attached using an ATTACH instruction prior to using this

function.
Parameters
msgsize Optional Real value, variable, or expression whose value represents the
array size of $msg.
$title Optional string constant, variable, or expression that contains the title
of the pendant’s Custom Message screen.
$msg Optional string constant, variable, or expression that contains the body
of the pendant’s Custom Message screen. This can accept html tags to
create an html-formatted text box. If $msg is an array and msgsize > 1,
it will concatenate all the elements of the array. See the example code
that follows.
$f1 Optional string constant, variable, or expression that contains the label
of the F1 Key of the Custom Message Screen.
$f2 Optional string constant, variable, or expression that contains the label
of the F2 Key of the Custom Message Screen.
$f3 Optional string constant, variable, or expression that contains the label
of the F3 Key of the Custom Message Screen.
$f4 Optional string constant, variable, or expression that contains the label
of the F4 Key of the Custom Message Screen.
Details

PDNT.WRITE is used to set the screen of the T20 Pendant. This is used to create a user
interface to program the pendant through eV+. The screen can be either updated with a

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 393

PDNT.WRITE program instruction

subsequent PDNT.WRITE or cleared with a PDNT.CLEAR. While the screen is displayed, all
green keys, as well as Select Robot, are active, so that the robot can always be jogged. All
other keys have no effect aside from being sent to the eV+ software.

Example: Using PDNT.WRITE with the Pendant

The following instructions:

Sp.title = "Operator Control"

Sp.msg[0] = "Select Options from buttons below"
$p-f[1] - "AppS"

Sp.f[2] = "Status"

Sp.f[3] = ""

$p.f[4] = ""

PDNT.WRITE S$p.title, S$Sp.msg[], S$Sp.f[l], S$p.f[2], $p.f[3], S$p.f[4]

Create the screen:

-
=

G MC

X

Screen Generatate by Preceding Instructions

Example
The following code:
AUTO Stestmsg[0]
Stestmsg[0] = “This is a TEST msg”

PDNT.WRITE (1) “title”, $testmsgl[], “F1”, “F27”, “F37, “F4”

Creates the screen:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 394

PDNT.WRITE program instruction

title

|
—
o
(]
=
=

w
(]
=

—l
=
[
o
[
o=

Tag Example
Paragraph <p>Thisis a paragraph.</p>
Line Break

Horizontal Rule <hr>

Bold Text Bold text

Emphasized Text | Emphasized text

Italic Text <i>Italic text</i>

Smaller Text <small>Smaller text</small>

\%

Important Text Important text</strong

Related Keywords
PDNT.NOTIFY program instruction
PDNT.CLEAR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 395

PENDANT real-valued function

PENDANT real-valued function

Syntax

PENDANT (select)

Function

Return input from the manual control pendant.

Usage Considerations

The pendant must be attached using an ATTACH instruction prior to using this function. See
Details below.

Parameter

select Real-valued expression whose value selects what type of pendant
information is returned (see below).

Details

The value returned depends upon the select parameter as follows:

select> 0

Immediately returns a value that reflects the actual state of the key with the given key
number at the instant the function is called. The state of the key depends upon the key
mode setting for that key. See the KEYMODE program instruction for information about
setting key modes and see the section Programming the pendant in the eV+ Language
User's Guide, for a table of the key numbers. The value returned is meaningful only if the
pendant is connected.

If a key is in keyboard mode, the value ON (-1) indicates that the key is pressed. The value
OFF (0) indicates that the key is not pressed.

If a key isin level mode, the value ON (-1) indicates that the pendant is attached in USER
mode and that the key is pressed. The value OFF (0) indicates that the pendant is not in
USER mode, or that the key is not pressed.

If a key is in toggle mode, the value ON (-1) indicates that the key is on and the value OFF
(0) indicates that the key is off. If the pendant is not in USER mode, the value returned still
accurately reflects the state of the toggled key.

select = 0

Returns the key number of the next keyboard mode key pressed. Program execution is
suspended until a keyboard mode key is pressed. If no key is programmed in this mode, an

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 396

PENDANT real-valued function

€rror occurs.

select = -2

Returns the current value from the speed label, in the range of 0 to 100 (decimal). When the
Pendant Jog mode is COMP, the monitor speed is returned. In other jog modes, the jog speed
is returned.

select = -3

Returns the current display screen active on the pendant.

The display modes should be interpreted as follows:

Display mode Interpretation
1 Home screen
2 Other screens
3 Error screen
4 USER (custom) screen
select = -4

Returns the version number of the manual control software. This is the same as the value
returned by the real-valued function ID(1,2). The value -1 is returned if the pendant is not
connected to the system.

Examples

This example sets the manual control soft keys to keyboard mode, and then waits for one of
them to be pressed (also see the section Soft Signals in the eV+ Language User's Guide).

ATTACH (1) ;Attach the pendant LUN
KEYMODE 1,5 = 0 ;Set soft keys to keyboard mode
key = PENDANT (0) ;Wait and return next key hit
TYPE "Soft key #", key, " pressed"

DETACH (1) ;Detach the pendant LUN

This example sets the DONE key to level mode and loops until the key is pressed.

ATTACH (1) ;Attach the pendant LUN
KEYMODE 8 = 2 ;Set DONE key (8) to level mode
WAIT PENDANT (8) ;Pause until DONE key is pressed
DETACH (1) ;Detach the pendant LUN

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 397

PENDANT real-valued function

Related Keywords
ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 398

#PHERE precision-point function

#PHERE precision-point function

Syntax
#PHERE

Function

Return a precision-point value representing the current location of the currently selected
robot.

Usage Considerations

The function #PHERE is considered to be a precision-point name. Thus, the # character
must precede the function name whenever it is used.

PHERE is a reserved word in eV+ and cannot be used for a variable or program name.

Details
The PHERE real-valued function is equivalent to the program instruction HERE #pp.
Example:

The following example shows #PHERE being used to set a precision point value, in this case
#pp.

SET #pp = #PHERE

Related Keyword

HERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 399

PI real-valued function

PI real-valued function

Syntax
PI

Function

Return the value of the mathematical constant pi (3.141593).

NOTE: TYPE, PROMPT, and similar instructions display the result of the above example as
a single-precision value. However, pi is actually stored and manipulated as a double-
precision value. The LISTR monitor command displays real values to full precision.

Usage Considerations

The word "pi" cannot be used as a program name or variable name.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 400

PING monitor command

PING monitor command

Syntax

PING node

Function

Test the network connection to a node.

Usage Considerations

This command is relevant only to controllers with the AdeptNet option.

Parameters

node Name or dotted-decimal IP address of the network node with which
communication will be attempted. If a node name is used, it must have
been defined in the eV+ configuration file or by an FSET command or
instruction.

Details

This command tests the network connection to a named or addressed node. If the node
responds, the command displays Success. If the node does not respond within 5 seconds,
the command displays Node not reachable.

Examples
To determine if a node named server? is successfully connected, type
ping server2
The Success response indicates that the connection was successful.
The response Node not reachable indicates that the connection was not successful.

To determine if a node whose IP address is 172.16.200.1 is connected, type

ping 172.16.200.1

Related Keywords
FSET monitor command

NET monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 401

#PLATCH precision-point function

#PLATCH precision-point function

Syntax

#PLATCH (select)

Function

Return a precision-point value representing the location of the robot at the occurrence of the
last external trigger or a Stop on Digital Signal.

Usage Considerations

The function name #PLATCH is considered to be a precision-point name. Thus, the #
character must precede all uses of the function.

#PLATCH(0) returns information for the robot selected by the task executing the function. If
the eV+ system is not configured to control a robot, use of the #PLATCH function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

Parameter

select Optional integer, expression, or real variable specifying:

0 Robot position latch of currently selected robot (default)
n Robot position latch of robot n

Details

#PLATCH() returns a precision-point value that represents the location of the robot when
the last trigger occurred. The LATCHED real-valued function should be used to determine
when an external trigger has occurred and a valid location has been recorded.

Operation of the external trigger can be configured from the eV+ System Configuration
Editor in the ACE software. For details, see the ACE User's Guide.

See the Adept Intelligent Force Sensor User's Guide for details of the Stop on Digital Signal
option.

Related Keywords

LATCH transformation function

LATCHED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 402

POS real-valued function

POS real-valued function

Syntax

POS (search_string, sub_string, start)

Function

Return the starting character position of a substring in a string.

Parameters

search_string String expression to be searched for the occurrence of a
substring.

sub_string String expression containing the substring to be searched for
within the search string.

start Optional expression indicating the character position within the
search string where searching is to begin.

Details

Returns the character position in search_string where sub__string begins. If the substring
does not occur within the search string, a value of 0 is returned.

If startis provided, it indicates the character position within search_string where
searching will begin. A value of 1 indicates the first character. If start is omitted or less than
1, searching begins with the first character. If start is greater than the length of search_
string, a value of 0 is returned.

When checking for a matching substring, uppercase and lowercase letters are considered to
be the same.

Examples
POS ("file.ext", ".") iReturns 5
POS("file"™, ".") ;Returns 0
POS ("abcdefgh", "DE") ;Returns 4
POS("1-2-3-4", "-n, 5) ;Returns 6

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 403

POWER system switch

POWER system switch

Syntax
... POWER

Function

Control or monitor the status of high power.

Usage Considerations

DANGER: Do not use the POWER switch to enable power from
within a program unless your system is subject to European
certification. With European certification, special safety features are
built-in to the system to prevent the robot from being activated
without warning. See Details for additional information.

Using this switch to turn on high power is potentially dangerous when performed from a
program because the robot can be activated without direct operator action. Turning on high
power from the terminal can be hazardous if you do not have a clear view of the robot
workspace or do not have immediate access to an Emergency Stop button.

Details

Enabling this switch is equivalent to pushing the COMP/PWR button on the pendant to turn
on high power. If there is no error condition that prevents power from coming on, the
enabling process proceeds to the second step, in which you must press the HIGH POWER
button on the FP. (Systems not subject to European certification do not require the second
step.)

Disabling this switch requests the robot to perform a controlled deceleration and power-down
sequence. This sequence consists of:

1. Decelerating all robots according to the user-specified parameters. (See the following
Note.)

Turning on the brakes.
Waiting for the user-specified brake-delay interval. (See the following Note.)

Turning off the amplifiers and power.

aua A W N

Asserting the backplane Emergency Stop signal and deasserting the High Power
Enable (HPE) signal.

Note that DISABLE POWER may take an arbitrarily long time due to long deceleration times
and long brake turn-on delays. (Use the ESTOP command or program instruction when you

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 404

POWER system switch

desire an immediate shutdown.) The value of this switch can be checked at any time with the
SWITCH real-valued function to determine if high power is on or off.

To disable power from a robot program without generating an error condition, the program
must either be in DRY.RUN mode or DETACH the robot from program control. See the
DRY.RUN switch or DETACH program instruction for details.

Example

The following program segment detaches the robot, turns high power off, and waits for you to
turn high power back on.

DETACH ;Detach robot from program
DISABLE POWER ;Turn off power

TYPE "Press the COMP/PWR button to continue"

ATTACH ;Wait for power on and attach

TYPE "Robot program continuing..."

Related Keywords
DISABLE monitor command
DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
ESTOP program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 405

#PPOINT precision- point function

#PPOINT precision- point function

Syntax

#PPOINT (jl1_value, j2_value, j3_value, j4_value, j5_value, j6_value, j7_value, j8_value,
j9_value, j10_value, j11_value, j12_value)

Function

Return a precision-point value composed from the given components.

Usage Considerations

The #PPOINT function name is considered to be a precision-point name. Thus, the #
character must precede all uses of the function.

Parameters

j1_value Optional real-valued expressions for the respective robot joint
positions. (If more values are specified than the number of robot

j2_value joints, the extra values are ignored.)

j3_value

j12_value

Details

Returns a precision-point value composed from the given components, which are the
positions of the first through last robot joints, respectively.

A zero value is assumed for any parameter that is omitted.

Examples

Assume that you want to perform a coordinated motion of joints 2 and 3 of a robot with 4
joints, starting from its current location. The following program segment performs such a
motion:

HERE #ref ;Define current location
DECOMPOSE x[] = f#ref ;Fi1l array with components
;Move to new precision point defined with modified components

MOVE #PPOINT (x[0], x[1l]+a, x[2]-a/2, x[3])

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 406

#PPOINT precision- point function

The following steps lead to the same final location, but the robot joints are not moved
simultaneously with this method.

DRIVE 2, a, 100 ;Drive joint 2
DRIVE 3, -a/2, 100 ;Drive joint 3
Related Keywords
DECOMPOSE program instruction

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 407

PRIORITY real-valued function

PRIORITY real-valued function

Syntax
PRIORITY

Function

Return the current reaction lock-out priority for the program.

Usage Considerations
The name "priority" cannot be used as a program name or variable name.

This function returns the reaction lock-out priority, not the program priority of the executing
program.

Details

The reaction lock-out priority for each program task is set to zero when execution of the task
is initiated. The priority can be changed by the program at any time with the LOCK
instruction, or the priority is set automatically when a reaction occurs as prescribed by a
REACT or REACTI instruction.

The PRIORITY function can be used to determine the current setting of the reaction lock-out
priority for the task executing the function.
Example

This example raises the priority, performs some operation that requires a reaction routine to
be locked out, and then restores it to its previous value.

save = PRIORITY ;Save the current priority

IF save < 10 THEN ;Raise priority to at least 10
LOCK 10

END

; Access data shared by a reaction routine.
LOCK save ;Set priority to original value
Related Keywords
LOCK program instruction
REACT program instruction
REACTI program instruction

PROCEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 408

PROCEED program instruction

Syntax
PROCEED task

Function

Resume execution of an application program.

Usage Considerations

A program cannot resume if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter
task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed.
Details

This instruction resumes execution of the specified program task at the step following the one
where execution was halted due to a PAUSE instruction, an ABORT instruction, a breakpoint,
a watchpoint, single-step execution, or a runtime error.

In addition to continuing execution of a suspended program, this instruction can be used to
initiate execution of a program that has been prepared for execution with the PRIME
command.

If the specified task is executing and the program is at a WAIT or WAIT.EVENT instruction (for
example, waiting for an external signal condition to be satisfied), typing proceed has the
effect of skipping over the WAIT or WAIT.EVENT instruction.

This instruction has no effect if the specified task is executing and the program is not at a
WAIT or WAIT.EVENT instruction.

PROCEED differs from RETRY in the following manner: If a program instruction generated an

error, RETRY attempts to reexecute that instruction, but PROCEED resumes execution at the
instruction that follows. If a robot motion was in progress when the program stopped, RETRY
attempts to complete that motion, but PROCEED goes on to the next motion.

Related Keywords
ABORT monitor command

ABORT program instruction

EXECUTE monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 409

PROCEED program instruction

EXECUTE program instruction
PRIME monitor command
PROCEED monitor command
RETRY monitor command
RETRY program instruction
STATUS monitor command
SSTEP monitor command

XSTEP monitorcommand

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 410

.PROGRAM program instruction

.PROGRAM program instruction

Syntax

.PROGRAM program_name(argument_list) ;comment

Function

Define the arguments that are passed to a program when it is invoked.

Usage Considerations
This instruction is inserted automatically by the eV+ editors when a new program is edited.
This special instruction must be the first line of every program.

The .PROGRAM statement cannot be deleted from a program.

Parameters
program_name Name of the program in which this instruction is found.

argument_list Optional list of variable names, separated by commas. Each
variable can be any one of the data types available with eV+
(belt, precision point, real-value, string, and transformation).
Each variable can be a simple variable or an array with all of its
indexes left blank.

;comment Optional comment that is displayed when the program is
loaded from a disk file and when the DIRECTORY command is
processed. (The semicolon [;] should be omitted if no
comment is included.)

Details

The eV+ editors automatically enter a .PROGRAM line when you edit a new program. They
also prevent you from deleting the line or changing the program name. You can, however,
edit the line to add, delete, or modify the argument list. (The RENAME monitor command
must be used to change the program name.)

The variables in the argument list are considered automatic variables for the named
program. (See the AUTO instruction.)

When a program begins execution (for example, via an EXECUTE command or instruction or
a CALL instruction), the arguments in the .PROGRAM instruction are associated with those in
the EXECUTE or CALL. This association allows values to be passed between a program and its
caller.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 411

.PROGRAM program instruction

See the description of the CALL instruction for an explanation of how the program arguments
receive their values from a calling program and return their values to the calling program. The
following rules apply to any program argument that is omitted when the program executes:

« Real-valued scalar parameters can be assigned a value within a program if they are
omitted.

« Location, string, and belt (scalar or array) parameters, and real-valued array
parameters, cannot be assigned a value within a program if they are omitted. (AUTO
variables can be used to work around this restriction, as shown in the example below.)
However, undefined parameters can be passed as program arguments and then be
assigned a value.

NOTE: If a program attempts to assign a value to one of these omitted variables, the error
Undefined value results. In that case, the error refers to the variable on the left side of
the assignment instruction.

« Ifan undefined or omitted parameter is passed to another program through a
subsequent CALL instruction, and the type of the variable is ambiguous (i.e., the type
could be real-valued or location), the parameter is assumed to be real-valued.

« Elements of an omitted array parameter cannot be passed by reference in a
subsequent CALL instruction.

The DEFINED real-valued function can be used within a program to check whether a program
parameter is defined (meaning both: passed as a argument, and as an argument that has
been assigned a value previously). The example below shows how a program can be written
to accommodate undefined or omitted parameters.

A comment can be included on the .PROGRAM line, which is displayed when the program is
loaded from the disk and by the DIRECTORY command.

Examples
Define a program that expects no arguments to be passed to it:

.PROGRAM get ()

Define a program that expects a string-valued argument and either a location or real-valued
argument (the type of the second argument is determined by its use in the program):

.PROGRAM test ($n, dx)

The following program segment shows how a program can be written to deal with undefined
or omitted parameters. The example shows part of the program example, which has a real-
valued parameter and a string parameter.

.PROGRAM example (real, $string)
AUTO $internal.var
; Check for undefined or omitted real-valued scalar parameter.
IF NOT DEFINED (real) THEN ;If parameter is undefined

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 412

.PROGRAM program instruction

real =1 ;assignment of desired
END ;default value is okay
;Check for undefined or omitted string parameter.
IF DEFINED ($string) THEN ;If parameter is defined,
S$internal.var = $string ;use the parameter value
ELSE ;Otherwise,
Sinternal.var = "default" ;use default value

END
; (Program continues...)
.END

Refer to the DEFINED function for more details and for testing nonreal arguments.

Related Keywords
CALL program instruction
CALLP program instruction
CALLS program instruction
EXECUTE monitor command
EXECUTE program instruction
PRIME monitor command
SSTEP monitor command

XSTEP monitorcommand

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 413

PROMPT program instruction

PROMPT program instruction

Syntax

PROMPT output_string, variable_list

Function

Display a string on the system terminal and wait for operator input.

Parameters
output_string Optional string expression that is output to the system terminal.
The cursor is left at the end of the string.
variable_list A list of real-valued variables, or a single string variable, that
receives the data.
Details

Displays the text of the output string on the system terminal, and waits for you to typein a
line terminated by pressing the RETURN key.

The input line can be processed in either of two ways:

1. Ifalist of real-valued variables is specified as the variable list, the line is assumed to
contain a list of numbers separated by space characters and/or commas. Each
number is converted from text to its internal representation, and its value is stored in
the next variable contained in the variable list. If more values are read than the
number of variables specified, the extra values are ignored. If fewer values are read,
the remaining variables are set to zero. If data is read that is not a number, an error
occurs and program execution stops. Each PROMPT instruction should request only
one value to avoid confusion and to reduce the possibility of error.

2. Ifasingle string variable is specified as the variable list, the entire input line is stored
in the string variable. The program must then process the string appropriately.

If you press the RETURN key, or press CTRL+C, an empty line is read. This results in all the
real variables being set to zero, or the string variable being assigned an empty string.

If you press CTRL+Z, an end-of-file error condition results. If there is no REACTE instruction
active, program execution is terminated and an error message is displayed. Thus, CTRL+Z
can be a useful way to abort program execution at a PROMPT.

Examples

Consider the instruction:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 414

PROMPT program instruction

PROMPT "Enter the number of parts: ", part.count

The result of executing this instruction is the display of the message

Enter the number of parts:

on the system terminal to ask you to type in the desired value. After you type a number and
press the RETURN key, the variable part.count is set equal to the value typed, and program
execution resumes.

Consider changing the above instruction to:

PROMPT "Enter the number of parts: ", $input

Even if you enter characters that are not valid for numeric input, eV+ does not output an
error message. The application program can use the various string functions to extract
numeric values from the input string.

If you want to include format specifications in the string output to the terminal (such as /Cn
to skip lines), you can use either the $ENCODE function or the TYPE instruction. For example,
the instruction

PROMPT S$ENCODE (/B,/Cl,/X10)+"Enter the number of parts: ", $input

beeps the terminal, spaces down a line, spaces over ten spaces, outputs the string, and waits
for your input. (Note that a + sign has to be used between the $ENCODE function and the
quoted string because the entire output_string parameter must be a single string
expression.)

The following pairs of instructions are equivalent to the previous example:

TYPE /B, /Cl, /X10, /S
PROMPT "Enter the number of parts: ", $input

or

TYPE /B, /Cl, /X10, "Enter the number of parts: ", /S
PROMPT , $input

Note that /S must be included in the TYPE instructions as shown to have the prompt string
output on one lineg, and to have the cursor remain on that line.

Related Keywords
GETC real-valued function

READ program instruction

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 415

RANDOM real-valued function

RANDOM real-valued function

Syntax
RANDOM

Function

Return a pseudorandom number.

Usage Considerations

The word "random" cannot be used as a program name or variable name.

Details

Returns a pseudorandom number in the range 0.0 to 1.0, inclusive. Thus, each time the
RANDOM function is evaluated, it returns a different value.

The numbers generated by this function are pseudorandom because the sequence repeats
after this function has been called 224 (16,777,216) times.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 416

REACT program instruction

REACT program instruction

Syntax

REACT signal_num, program, priority

Function

Initiate continuous monitoring of a specified digital signal and automatically trigger a
subroutine call if the signal properly transitions.

Usage Considerations

The REACT (and REACTI) instruction can be executed by any of the program tasks. That is,
each task can have its own, independent reaction definition.

Any of the first twelve external input signals (1001 to 1012) can be simultaneously
monitored.

Reactions are triggered by signal transitions and not levels. Thus, if a signal is going to be
monitored for a transition from off to on and the signal is already on when a REACT (or
REACTT) instruction is executed, then the reaction does not occur until the signal goes off
and then on again.

A signal must remain stable for at least 18 milliseconds to assure detection of a transition.

NOTE:If software signals are being used to trigger reactions, the WAIT instruction (with
no argument) should be used as required to ensure that the signal state remains
constant for the required time period.

The requested signal monitoring is enabled as soon as a REACT (or REACTI) instruction is
executed. Because of the way eV+ processes program instructions, this can result in an
effect on the motion initiated by the motion instruction preceding the REACT (or REACTI)
instruction in the program. (See the section Motion Control Examples in the eV+ Language
User's Guide for a discussion of robot motion processing.)

Parameters

signal_num Real-valued expression representing the signal to be monitored.
The signal number must be in the range 1001 to 1012 (external
input signals) or 2001 to 2008 (internal software signals). (The
software signals can thus be used by one program task to interrupt
another task.) If the signal number is positive, eV+ looks for a
transition from off to on; if signal_num is negative, eV+ looks for
a transition from on to off.

program Name of the subroutine that is to be called when the signal

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 417

REACT program instruction

transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from 1
to 127. See the LOCK instruction for additional details on priority
values. The default valueis 1.

Details

When the specified signal transition is detected, eV+ reacts by checking the priority specified
with the REACT instruction against the program priority setting at that time. (The program
priority is always set to 0 when execution begins. It can be changed with the LOCK
instruction.) If the REACT priority is greater than the program priority, the normal program
execution sequence is interrupted and the equivalent of a CALL program instruction is
executed. Also, the program priority is temporarily raised to the REACT priority, locking out
any reactions of equal or lower importance. When a RETURN instruction is executed in a
reaction subroutine, the program priority is restored to the value it had before the reaction
program was invoked.

If the REACT priority is less than or equal to the program priority when the signal transition is
detected, the reaction is queued and does not occur until the program priority is lowered.
Therefore, depending upon the relative priorities, there can be a considerable delay between
the time a signal transition is noticed by eV+ and the time the reaction program is actually
invoked.

If multiple reactions are pending because of a priority lockout, the reaction with the highest
priority is serviced first when the locking priority is lowered. If multiple pending reactions have
the same priority, the one associated with the highest signal number is processed first.

The subroutine call to program is performed such that when a RETURN instruction is
encountered, the next instruction to be executed is the one that follows the last instruction
processed before the reaction program was initiated. If there is a sequence of instructions
that you do not want interrupted by a reaction program, you should use the LOCK instruction
to raise the program priority during that sequence.

The signal monitoring continues until one of the following occurs:
« An IGNORE instruction is executed for the signal.
« Areaction occurs (in which case IGNORE signal_num is automatically performed).

« A REACT (or REACTI) instruction is executed that refers to the same signal. That is, if
the signal specified in a REACT instruction is already being monitored by a previous
REACT or REACTI instruction, the old instruction is canceled when the new REACT
instruction is executed.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 418

REACT program instruction

Example

The instruction below monitors the external input signal identified by the value of the
variable test. If the desired signal transition occurs (as specified by the sign of the value of
test), program execution branches to program delay as soon as the program priority drops to
0 (since no priority is specified in the instruction). (The program priority is raised to 1 [the
default value] when the subroutine is invoked; the program priority returns to 0 when the
program returns.)

REACT test, delay

Related Keywords
IGNORE program instruction
LOCK program instruction
PRIORITY real-valued function
REACTE program instruction
REACTI program instruction

SIG.INS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 419

REACTE program instruction

REACTE program instruction

Syntax
REACTE program_name

Function

Initiate the monitoring of errors that occur during execution of the current program task.

Usage Considerations

The main purpose for the REACTE instruction is to allow for an orderly shutdown of the
system if an unexpected error occurs. If a robot hardware error occurs, for example, a
REACTE program can set external output signal lines to shut down external equipment.
Using the REACTE instruction for other purposes requires extreme caution.

The REACTE instruction can be executed by any of the program tasks. That is, each task can
have its own, independent REACTE definition. (A task cannot directly trap errors caused by
another task, but tasks can signal each other via global variables or software signals.)

The ERROR real-valued function must be called before a REACTE with no program name,
since the REACTE clears the previous errors

See the list below for other considerations.

Parameter

program_name Optional name of the program that is to be called when a program
error occurs. If no program is specified, the previous REACTE is
canceled, and any pending error message is discarded.

Details

If an error occurs after a REACTE instruction has been executed, the specified program is
invoked, rather than stopping normal program execution. (The program is invoked as
though by the CALL program instruction.) The ERROR real-valued function can be used
within the error-handling program to determine what error caused the program to be
invoked.

There are several special considerations that must be kept in mind when using this facility:

« The program priority is raised to 254 when the error-handling program is invoked,
locking out all reaction programs.

« Execution of the program task stops if an error occurs while the system is processing a
previous error.

« There must be room on the user program stack for one more subroutine. Therefore,

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 420

REACTE program instruction

the error *Too many subroutine calls* cannot be processed. (See the STACK monitor
command.)

The error-handling program can contain a RETURN instruction. When it is executed,
the program tries to re-execute the instruction that caused the error. Note that this
may cause an endless loop if the error continues to occur.

Before the error-handling program is entered, a DETACH instruction for the robot
(logical unit number 0) is effectively executed. Thus, an ATTACH instruction must be
executed for the robot before program control of the robot can resume.

If a STOP, HALT, or PAUSE instruction is executed within the error-handling program,
the original error message is output unless the error-handling program contains a
REACTE instruction with no argument.

Unlike REACT and REACTI, execution of the REACTE error-handling program is never
deferred because of priority considerations.

Example

Initiate monitoring of errors so that the program error.trap is executed if any error should
occur during execution of the current program task:

REACTE error.trap

Related Keywords

ERROR real-valued function

REACT program instruction

REACTI program instruction

RETURNE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 421

REACTI program instruction

REACTI program instruction

Syntax

REACTI signal_num, program, priority

Function

Initiate continuous monitoring of a specified digital signal. Automatically stop the current
robot motion if the signal transitions properly and optionally trigger a subroutine call.

Usage Considerations

For most applications, the REACTI instruction should be used only in a robot control program.
(See below for more information.)

When a REACTI triggers, the robot that is stopped is the one selected by the task at the time
of the trigger, regardless of which robot was selected at the time the REACTI instruction was
executed.

Also see the considerations listed for the REACT program instruction.

Parameters

signal_num Real-valued expression representing the signal to be monitored. The
signal number must be in the range 1001 to 1012 (external input
signals) or 2001 to 2008 (internal software signals). (The software
signals can thus be used by a secondary program to interrupt the
robot control program, and vice versa.)

If the signal number is positive, eV+ looks for a transition from off to
on; if signal is negative, eV+ looks for a transition from on to off.

program Optional name of the subroutine that is called when the signal
transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from 1 to
127. If this argument is omitted, it defaults to 1. See the LOCK
instruction for additional details on priority values.

Details

When the specified signal transition is detected, eV+ reacts by immediately stopping the
current robot motion. If a program is specified, eV+ then continues processing the reaction
just as it would for a REACT instruction. (See the description of the REACT instruction for a
full explanation of this processing).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 422

REACTI program instruction

When REACTI is used by a program task that is not actually controlling the robot, care must
be exercised to make sure the robot control program does not nullify the intended effect of
the reaction subroutine. That is, if your application has one program task monitoring the
signal and a different program task controlling the robot, you should keep the following points
in mind when planning for processing of the reaction:

« The robot motion in process at the time of the reaction is stopped, as if a BRAKE
instruction were executed, but execution of the robot control program is not directly
affected.

. If areaction subroutine is specified, that routine is executed by the task that is
monitoring the reaction (not by the task controlling the robot).

The signal monitoring continues until one of the following occurs:
« An IGNORE instruction is executed for the signal.
« Areaction occurs (in which case IGNORE signal_num is automatically performed).

« AREACTI (or REACT) instruction is executed that refers to the same signal. That is, if
the signal specified in a REACTI instruction is already being monitored by a previous
REACTI or REACT instruction, the old instruction is canceled when the new REACTI
instruction is executed.

If you do not want the robot motion to stop until the reaction program is actually called, you
should use a REACT instruction and put a BRAKE instruction in the reaction program.

Example

The instruction below initiates monitoring of external input signal #1001. The robot motion is
stopped immediately if the signal ever changes from on to off (since the signal is specified as a
negative value). A branch to program alarm then occurs when the program priority falls
below 10 (if it is not already at or below that level).

REACTI -1001, alarm, 10

Related Keywords
IGNORE program instruction
LOCK program instruction
PRIORITY real-valued function
REACT program instruction
REACTE program instruction

SIG.INS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 423

READ program instruction

READ program instruction

Syntax

READ (lun, record_num, mode) var_list

Function

Read a record from an open file or from an attached device that is not file oriented. For an
network device, read a string from an attached and open TCP connection.

Usage Considerations
The logical unit referenced by this instruction must have been attached previously.

For file-oriented devices, a file must already have been opened with an FOPEN_ instruction.
Parameters

lun Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_num Optional real-valued expression that specifies the record to read for
file-oriented devices opened in random-access mode (see the
FOPEN_ instructions). For nonfile-oriented devices or for sequential
access of a file, this parameter should be 0 or omitted. Records are
numbered from one to a maximum of 16,777,216.

When accessing the TCP device with a server program, this
parameter is an optional real variable that returns the client handle
number. The handle can be used to identify the client accessing a
multiple-client server.

mode Optional real-valued expression that specifies the mode of the read
operation. Currently, the mode is used only for the terminal and
serial I/0O logical units. The value is interpreted as a sequence of bit
flags as detailed below. (All bits are assumed to be clear if no mode
value is specified.)

Bit 1 (LSB) Wait (0) vs. No-wait (1) (mask value = 1)

If this bit is clear, program execution is suspended until the read
operation is completed. If the bit is set and the requested data is not
available, program execution continues immediately and the
IOSTAT function returns the error code for *No data received*
(-526).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 424

READ program instruction

NOTE: For a no-wait READ to access a serial line, the line must
be configured to use DDCMP.

Bit 2 Echo (0) vs. No-echo (1) (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the
source. If the bit is set, characters are not echoed back to the
source. (This mode bit is ignored for the serial lines.)

var_list Either a list of real-valued input variables or a list of string variables,
which receives the data (see following details).

Details

This is a general-purpose data input instruction that reads a record from a specified logical
unit. A record can contain an arbitrary list of characters but must not exceed 512 characters
in length. For files that are opened in fixed-length record mode, this instruction continues to
read characters until it has read exactly the number of characters specified during the
corresponding FOPEN_ instruction.

For variable-length record mode (with most devices), this instruction reads characters until
the first carriage-return (CR) and line-feed (LF) character sequence (or Ctrl+2) is
encountered. Thus, for example, if you perform a variable-length record mode read from the
disk, you receive all the characters until a CR and LF are encountered.

The special character Ctrl+Z (26 decimal) indicates the logical end of the file, which is
reported as an error by the IOSTAT function. No input characters can be read beyond that
point.

READ operations from the terminal, the pendant, and the serial lines are always assumed to
be in variable-length record mode. Except as noted below, the records are terminated by CR
and LF (which are not returned as part of the record). Thus, a READ from these devices is not
complete until a CR and LF are received as input. For example, if you perform a READ from
the terminal, you receive all the characters until the RETURN key is pressed.

NOTE:When a CR is received from the system terminal, eV+ automatically adds a LF.
Similarly, the pendant's DONE key is interpreted as CR and LF.

The GETC real-valued function can be used instead of the READ instruction if you want to
receive the CR and LF characters at the end of a record.

When a READ instruction accesses a serial line configured to use DDCMP, the record may
contain arbitrary data, including CR and LF characters.

If bit 1 is set in the mode value, a read operation that is not complete does not cause the
program to wait, but returns immediately with the error *No data received* (error code -

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 425

READ program instruction

526). Then, additional READ instructions must be executed, until one is complete, in order to
obtain the data in the variable list. The IOSTAT function can be used to determine when such
a READ is complete.

Once a record has been read, it is processed in one of the following two ways:

1. Ifthevar_list parameteris a list of real-valued variables, the record is assumed to
contain a list of numbers separated by space characters and/or commas. Each
number is converted from text to its internal representation, and its value is stored in
the next variable contained in the variable list. If more values are read than the
number of variables specified, the extra values are ignored. If fewer values are read,
the remaining variables are set to zero. If data is read that is not a number, an error
occurs and program execution stops (or an error reaction occurs).

2. Ifthevar_list parameteris a list of string variables, the entire record is stored in the
string variables as follows. The first 128 bytes in the record are copied to the first
string variable. If there are more than 128 bytes in the record, the second string
variable is filled with the next 128 bytes. This continues until the entire record has
been processed or all the string variables have been filled.

If there is not enough data to fill all the string variables, the unused string
variables are set to the empty string (""). If there is too much data for the
number of string variables specified, an error is reported by the IOSTAT real-
valued function.

When a READ is performed in variable-length record mode, the strings contain
all the characters up to, but not including, the terminating CR and LF, which
are discarded.

Any error in the specification of this instruction (such as attempting to read from an invalid
unit) causes a program error and halts program execution. However, errors associated with
performing the actual read operation (such as end of file or device not ready) do not halt
program execution since these errors may occur in the normal operation of a program. These
normal errors can be detected by using the IOSTAT function after performing the read. In
general, it is good practice always to test whether each read operation completed
successfully by testing the value from IOSTAT.

When accessing a network device, the record_num parameter allows a server to
communicate with multiple clients on a single logical unit. In this context, the parameter
provides ahandle number that you can use to identify the client from which the READ data
was received. Handles are allocated when a client connects to the server and are deallocated
when the client disconnects. In order to determine when the client connection or
disconnection is done, you must use the IOSTAT real-valued function after the READ. Refer
to the documentation for IOSTAT.

The READ instruction with TCP/IP reads data until either the input string is full or the buffer
is empty, at which point the instruction returns. READ with TCP/IP does not allow fixed-
length records and does not terminate when encountering a delimiter.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 426

READ program instruction

Example
Read a line of text from the disk and store the record in the string variable $disk.input:

READ (5) $disk.input

For an example of using the READ instruction with the TCP device, refer to the Example
section for the IOSTAT real-valued function.

Related Keywords
ATTACH program instruction
FOPEN_ program instruction
FSEEK program instruction
GETC real-valued function
IOSTAT real-valued function

PROMPT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 427

READY program instruction

READY program instruction

Syntax
READY

Function

Move the robot to the READY location above the workspace, which forces the robot into a
standard configuration.

Usage Considerations

Before executing this instruction with the DO monitor command (DO READY), make sure
that the robot will not strike anything while moving to the READY location.

The READY instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the READY instruction
causes an error.

Details
This instruction always succeeds, regardless of where the robot is located at the time.
A Cobra robot has the following configuration when it is at the READY location:

« Joint 2 is close to 90 degrees

« The axis of joint 3 isin the World X-Z plane (thatis, Y = 0)

. Thealignment keyway in the end-effector flange is directed along the positive X axis
(that is, the tool X axis is parallel to the world X axis)

The following table lists the joint positions for the READY locations for various Omron Adept
robots.

Viper Viper
Joint c;::)a c:g:)a c;g;a 35“:/%"30 650/850 | 1700/
/1300 1700D
1 61.2° | -43.5° | -42.9° 0° 0° 0°
2 90.3° 96.8° 93.4° 0° 900 900
3 10.0 10.0 10.0 0° 180° 180°
mm mm mm

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 428

READY program instruction

29.1° 53.8° 50.5° 0° 0° 0°
N/A N/A N/A N/A 0° 90°
N/A N/A N/A N/A 0° 0°

Related Keyword
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 429

RELAX and RELAXI program instruction

RELAX and RELAXI program instruction

Syntax
RELAX
RELAXI

Function

Limp the pneumatic hand.

Usage Considerations
RELAX causes the hand to limp during the next robot motion.

RELAXI causes a BREAK in the current continuous-path motion and causes the hand to limp
immediately after the current motion completes.

The RELAX instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The RELAXI instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details

These instructions turn off both the open and close pneumatic control solenoid valves,
causing the pneumatic hand to become limp. If the RELAX instruction is used, the signal is
sent when the next robot motion begins.

The RELAXI instruction differs from RELAX in the following ways:
« ABREAK occurs if a continuous-path robot motion is in progress.

« Thesignals are sent to the control valves at the conclusion of the current motion or
immediately if no motion is in progress.

« Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

Related Keywords
CLOSE program instruction
CLOSETI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 430

RELAX and RELAXI program instruction

HAND.TIME system parameter
OPEN program instruction
OPENI program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 431

RELEASE program instruction

RELEASE program instruction

Syntax
RELEASE

Function

Allow the next available program task to run.

Details

This instruction releases control to another task that is ready to run. For more information
on task scheduling, see the section Scheduling of Program Execution Tasks in the eV+
Language User's Guide.

This instruction can be used in place of the WAIT instruction (with no arguments) in cases
where other tasks must be given an opportunity to run, but a delay until the next trajectory
cycle is not desired.

Related Keywords
WAIT program instruction

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 432

RESET program instruction

RESET program instruction

Syntax
RESET

Function

Turn off all the external output signals.

Details

The RESET program instruction is useful in the initialization portion of a program to ensure
that all the external output signals are in a known state.

DANGER: Before issuing this instruction, make sure all devices

A connected to the output signals can safely be turned off. Be
especially careful of signals that start an action when they are
turned off.

Related Keywords
BITS monitor command
BITS program instruction
BITS real-valued function

I0 monitor command
RESET monitor command
SIG real-valued function
SIG.INS real-valued function
SIGNAL monitor command

SIGNAL program instruction
RETRY program instruction

Syntax

RETRY task

Function

Repeat execution of the last interrupted program instruction and continue execution of the
program.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 433

RETRY monitor command

Usage Considerations
RETRY cannot be processed when the specified task is executing.

A program cannot be resumed if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter
task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed. (See the eV+
Operating System User's Guide for information on tasks.)
Details

This instruction restarts execution of the specified task similar to the PROCEED instruction.
After a RETRY instruction, however, the point at which execution resumes depends on the
status at the time execution was interrupted. If a program step or robot motion was
interrupted before its completion, use of a RETRY instruction causes the interrupted
operation to be completed before execution continues normally. This allows you to retry a
step that has been aborted or that caused an error.

If no program step or robot motion was interrupted, the RETRY instruction has the same
effect as the PROCEED instruction.

NOTE: When a RETRY instruction is used to resume an interrupted motion, all motion
parameters are restored to the settings in effect before the motion was interrupted.

Related Keywords
PROCEED program instruction
PROCEED monitor command
SSTEP monitor command
STATUS monitor command

XSTEP monitorcommand

RETRY monitor command

Syntax
RETRY task

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 434

RETRY monitor command

Function

Repeat execution of the last interrupted program instruction and continue execution of the
program.

Usage Considerations

RETRY cannot be processed when the specified task is executing.

A program cannot be resumed if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter
task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed. (See the eV+
Operating System User's Guide for information on tasks.)
Details

This instruction restarts execution of the specified task similar to the PROCEED instruction.
After a RETRY instruction, however, the point at which execution resumes depends on the
status at the time execution was interrupted. If a program step or robot motion was
interrupted before its completion, use of a RETRY instruction causes the interrupted
operation to be completed before execution continues normally. This allows you to retry a
step that has been aborted or that caused an error.

If no program step or robot motion was interrupted, the RETRY instruction has the same
effect as the PROCEED instruction.

NOTE: When a RETRY instruction is used to resume an interrupted motion, all motion
parameters are restored to the settings in effect before the motion was interrupted.

Related Keywords
PROCEED program instruction
PROCEED monitor command
SSTEP monitor command
STATUS monitor command

XSTEP monitorcommand

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 435

RETURN program instruction

RETURN program instruction

Syntax
RETURN

Function

Terminate execution of the current subroutine, and resume execution of the suspended
program at its next step. A program may have been suspended by issuing a CALL, CALLP, or
CALLS instruction, or by the triggering of a REACT, REACTE, or REACTI condition.

Details

A RETURN instruction in @ main program has the same effect as a STOP instruction.

A RETURN instruction is assumed if program execution reaches the last step of a subroutine.
However, it is not good programming style to use this feature-an explicit RETURN instruction
should be included as the last line of each subroutine.

The effect of a RETURN instruction in an error reaction subroutine differs slightly. In that
case, if the reaction subroutine was invoked because of a program error (as opposed to an
asynchronous servo error or PANIC button press), the statement that caused the error is
executed again. That is, the error may occur again immediately. The RETURNE instruction
should be used in error reaction subroutines to avoid that situation.

If a RETURN instruction is used to exit from a reaction routine, the program reaction priority
is restored to whatever it was before the reaction routine started execution.

Related Keywords
CALL program instruction
CALLP program instruction
CALLS program instruction
LOCK program instruction
REACT program instruction
REACTE program instruction
REACTI program instruction
RETURNE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 436

RETURNE program instruction

RETURNE program instruction

Syntax
RETURNE

Function

Terminate execution of an error reaction subroutine and resume execution of the last-
suspended program at the step following the instruction that caused the subroutine to be
invoked.

Details

The RETURNE instruction is intended for use in error reaction subroutines. That is,
subroutines that are invoked, through the REACTE mechanism, as a result of an error during
program execution.

If a RETURNE instruction is used to exit from an error reaction routine, the program reaction
priority is restored to whatever it was before the error reaction routine started execution.

When a RETURNE instruction is executed in an error reaction subroutine, then execution
continues with the statement following the one executing when the error occurred. (Note
that in this situation, a RETURN instruction results in the statement that generated the
error being executed again, possibly causing an immediate repeat of the error.)

NOTE: Because of the forward processing ability of eV+, the instruction that is the source
of an error may not be the one executing when the error is actually registered. For
example, when a MOVE instruction is processed, the robot begins moving, but during the
motion several additional instructions may be processed. If an envelope or similar error
occurs after this forward processing, the RETURNE is based on the instruction processing
when the error occurs, not the MOVE instruction.

It may be helpful to note that the RETURNE instruction behaves similarly to the PROCEED
command. The RETURN instruction behaves similarly to the RETRY command (except that
with RETURN an interrupted robot motion is not restarted).

A RETURNE instruction in a program that is not executed in response to an error has the
same effect as a RETURN instruction. RETURNE, however, takes slightly longer to execute
than does RETURN.

Related Keywords
REACTE program instruction
RETURN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 437

RIGHTY program instruction

RIGHTY program instruction

Syntax
RIGHTY

Function

Request a change in the robot configuration during the next motion so that the first two
links of the robot resemble a human's right arm.

Usage Considerations
Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a right-handed configuration, this instruction is
ignored by the robot.

The RIGHTY instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the RIGHTY instruction
causes an error.

See LEFTY/RIGHTY.

Related Keywords
CONFIG real-valued function
LEFTY program instruction
SELECT program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 438

ROBOT system switch

ROBOT system switch

Syntax
... ROBOT [index]

Function

Enable or disable one robot or all robots.

Usage Considerations

The ROBOT system switches may be modified only when both of the following conditions are
satisfied:

1. The POWER system switch is OFF.

2. When the eV+ system was booted from disk, at least one robot started up without
reporting a fatal error.

The maximum number of robots supported depends on your controller configuration.

Some controllers do not allow a robot to be calibrated unless all robots with lower index
numbers are enabled.

Parameter

index Optional real value, variable, or expression (interpreted as an integer)
that specifies the robot to be enabled or disabled. The value should be 1
through 15 (corresponding to robots 1 through 15, respectively). If the
index is omitted or zero in an ENABLE or DISABLE command or
instruction, the settings for all robots are altered. Otherwise, only the
setting for the specified robot is affected.

Details

When the eV+ system starts up (after booting from disk), all the robots that started up
without reporting a fatal error are enabled by default, and all the corresponding ROBOT
switches are enabled. After start up, the ROBOT switches can be used to selectively disable
robots. For example, this can aid in the debugging of individual robots.

The ROBOT switches may be modified only for robots that are present and that started up
without a fatal error.

When a robot is disabled by use of the ROBOT switch, that robot is bypassed when:

« Power is enabled for all robots with the COMP/PWR button on the pendant or with the
POWER system switch.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 439

ROBOT system switch

« Allthe robots are calibrated via the CALIBRATE monitor command or program
instruction.

Motion instructions should not be executed for a robot that has been disabled.

The settings of these switches can be checked at any time with the SWITCH monitor
command or real-valued function to determine which robots are enabled.

Related Keywords
DISABLE monitor command
DISABLE program instruction
ENABLE monitor command
ENABLE program instruction
SWITCH monitor command
SWITCH program instruction
SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 440

ROBOT.OPR program instruction

ROBOT.OPR program instruction

Syntax
ROBOT.OPR (function_code) expl, exp2, ..., expn

Function

Execute operations that are specific to the currently selected robot or robot module.

Usage Considerations

ROBOT.OPR is a general-purpose instruction whose interpretation varies from one robot type
to another.

The instruction is ignored if there is no robot attached.

An error is reported if the robot is tracking a belt or if ALTER is active.

Parameters
function_code Optional real value that specifies a function for the selected robot
module.
expl, exp2, ..., Optional expressions whose interpretation is determined by the
expn selected robot module.

NOTE: An *Invalid argument* erroris returned if the "function_code" value used is not
valid. The same error is returned if an "exp" value exceeds its allowable range. The valid
"function_code" and "exp" values are described in the device module documentation for
your robot. See the Adept Robot Device Modules menu in the Adept Document Library to
access the device module for your robot.

Details

This instruction executes operations that are specific to the currently selected robot or robot
module. If the selected robot does not support any special operations, this instruction has no
effect.

The following table shows the "function" and "exp" values for the supported robot modules.
For additional details about the applicability and use of this instruction, refer to the
documentation for your specific robot module. See the Adept Robot Device Modules menu to
access the documentation for the device module for your robot.

NOTE: Only device modules for non-Omron Adept robots are documented.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 441

ROBOT.OPR program instruction

Supported Robot Modules

Robot function expl,
Modul- code = exp2,...exp- Description

e n
XY3 When the system is first booted, the first Z/Theta pair is selected as the
(modul- | primary head, and the second and third heads are not slaved. The
elD ROBOT.OPR program instruction must be executed to specify a different
21) primary head, and to slave heads.

The following points should be kept in mind when utilizing ROBOT.OPR to
change the head selection:

1. This instruction breaks any executing continuous-path motion and
modifies the head selection after the robot has come to a stop.

2. Before you slave one head to another head, you should ensure that the
Z and Theta values for the slave head are identical to those of the primary
head. If any differences exist, at the start of the next motion, the axes of
the slave head will quickly jump to the same joint positions as the primary
head.

0 enables expl Number of the primary Z/Theta axes (1-
selection of N).
the primary
and slaved
axes
exp2 (Optional) Number of the secondary

Z/Theta axes (1-N).

exp3 (Optional) Number of the third Z/Theta
axes (1-N).

exp4 (Optional) Number of the fourth Z/Theta
axes (1-N).

NOTE: "N" is the number of configured Z/Theta pairs,
which can be 1 to 4. There is no check for an axis pair
being specified more than once.

1 enables expl Z offset for first slaved axes.
definition of
the

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 442

ROBOT.OPR program instruction

L function ALy
Modul- - exp2,... - ipti
code p2,...exp Description
e n
position-
offset
values that
are added
tothe
commande-
dZandRZ
positions
for each
slave axis
exp2 (Optional) RZ offset for first slaved axes.
exp3 (Optional) Z offset for second slaved axes.
exp4 (Optional) RZ offset for second slaved
axes.
exp5 (Optional) Z offset for third slaved axes.
exp6 (Optional) RZ offset for third slaved axes.
NOTE: The offsets for the fourth set of slaved axes
cannot be set.
DLT For this robot, this instruction sets the Cartesian acceleration parameters
(modul- | toone of three sets of values. The purpose of this operation is to adjust
elD the dynamic performance of the robot depending upon the payload being
27) carried.

NOTE: When utilizing ROBOT.OPR to change the acceleration values,
the robot must be attached and stopped when this instruction is
executed, to ensure no adverse interactions with any current motion
execution.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 443

ROBOT.OPR program instruction

il function expl,
Modul- - P2 - ipti
code exp2,...exp Description
e n
0 setsthe expl Number of the set of Cartesian
CarteS|aq acceleration parameters to utilize (1-3).
icceleratlo— The parameters are intended to be used
parameters as follows:
to one of Parameter Set Intended
three sets Number Payload
of values.
1 0-1 kg
2 1-3 kg
3 3-5kg
Quattro | For this robot, this instruction sets the Cartesian acceleration parameters
650 to one of two sets of values. The purpose of this operation is to adjust the
Robot! dynamic performance of the robot depending upon the payload being

carried.

NOTE: When utilizing ROBOT.OPR to change the acceleration values,
the robot must be attached and stopped when this instruction is
executed, to ensure no adverse interactions with any current motion
execution.

0 (must be expl Number of the set of Cartesian

setto0) acceleration parameters to utilize (1 or 2).
(Parameter set #1 is applied when the
eV+ system is booted from disk.)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 444

ROBOT.OPR program instruction

Robot
Modul-

function_
code

expl,
exp2,...exp-
n

Description

Paramete-
r Set
Number

Intende-
d
Payload

Notes

1

Default

0-1 kg

1-2 kg

2-4 kg

4-6 kg

6-8 kg

8-10 kg

Parameter
sets 1-7 are
available
with all
Quattro
robots.

NOTE:
Payloads
greater
than 6 kg
with a
Quattro
650
robot, or
4 kg with
a Quattro
800
robot,
should be
used only
with the
P30
(fixed)
platform.

10-12 kg

12-15 kg

These
selections
are available
only with
the Quattro
650H/650H-
S robots.

1. The Quattro 650 robot device module (QPL) is not published, because this is an

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 445

ROBOT.OPR program instruction

Omron Adept Robot.

Related Keyword
ROBOT.OPR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 446

ROBOT.OPR real-valued function

ROBOT.OPR real-valued function

Syntax
ROBOT.OPR (mode, index)

Function

Returns robot-specific data for the currently selected robot.

Parameters
mode, The values of these two parameters select what robot-specific data is
index returned.

Details

The following table shows the mode and index information for the supported robot modules.
For additional details about the applicability and use of this instruction, refer to the
documentation for your specific robot module. See the Adept Robot Device Modules menu to
access the documentation for the device module for your robot.

NOTE: Only device modules for non-Omron Adept robots are documented.

Supported Robot Modules

Robot Module Mode Indices Description

XY3 (module ID 21) 1 1-5 The number of the primary ZTheta
pair, followed by the number of
the first slave pair, the second
slave pair, and the third slave pair.

The first zero value indicates the
end of the list of active slave pairs.

2 1,2 Always 0
3 Z offset for the first slaved ZTheta
4 RZ offset for the first slaved
ZTheta
5 Z offset for the second slaved
ZTheta

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 447

ROBOT.OPR real-valued function

Robot Module

Mode

Indices

Description

RZ offset for the second slaved
ZTheta

Z offset for the third slaved ZTheta

RZ offset for the third slaved
ZTheta

Quattro 650 Robot!

Number of the set of acceleration
parameters that is in effect. The
value 0 indicates no set has been
explicitly selected, and the default
parameters (set #1) are in effect.

Number of sets of acceleration
parameters that are available for
the current robot.

Maximum tool-flange rotation
angle (i.e., maximum deflection
from O degrees).

Size of the tool-flange rotation
"ambiguity" zone at each end of
the range of tool-flange rotation.

1 The Quattro 650 robot device module (QPL) is not published, because this is an

Omron Adept robot.

Related Keywords

ROBOT.OPR program instruction

SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 448

RUNSIG program instruction

RUNSIG program instruction

Syntax

RUNSIG signal_num

Function

Turn on (or off) the specified digital signal as long as execution of the invoking program task
continues.

Usage Considerations

Only one RUNSIG signal can be in effect for each program task.

Parameter

signal_num Optional real-valued expression that specifies one of the digital
output signals (or an internal software signal) that is to be
controlled.

The signal is set to on during program execution if the value is
positive. A negative value results in the signal being set to off during
program execution, and turned on when execution stops.

If no signal is specified, any RUNSIG in effect for the task is canceled.

Details

This instruction causes the specified digital signal to be turned on (or off) as soon as the
instruction is executed. The signal is turned off (or on) as soon as execution of the invoking
program task stops (or the STOP instruction is executed).

This instruction is useful in an application where auxiliary equipment must be stopped if an
error occurs during program execution.

Only one signal can be activated by a RUNSIG instruction at any one time (for each program
task). An error condition results unless a program cancels the first RUNSIG before
attempting to initiate a second.

If program execution is interrupted after a RUNSIG instruction has been executed, the
specified signal returns to the selected state again if a PROCEED or RETRY command is
issued. If an SSTEP or XSTEP command is issued, the signal returns to the specified state
during execution of the instruction that is invoked. Similarly, processing of a DO command
temporarily activates the RUNSIG signal for the corresponding program task. (The EXECUTE
command and instruction cancel any previous RUNSIG for the specified program task.)

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 449

RUNSIG program instruction

Example

Turn on the digital signal identified by the value of the variable run.signal (assuming the
value is positive):

RUNSIG run.signal

The signal remains on throughout execution of the current program. The signal goes off
when execution ends.

Related Keywords

I0 monitor command
RESET monitor command
SIG real-valued function
SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 450

RX, RY, RZ transformation functions

RX, RY, RZ transformation functions

Syntax

RX (angle)
RY (angle)
RZ (angle)

Function

Return a transformation describing a rotation.

Parameter

angle Real-valued expression that represents the rotation angle in degrees.

Details

These functions generate a transformation whose value consists of a rotation about the axis
associated with the function name and a zero displacement

X,Y,Z=0).

Example

Produce a transformation that describes a pure 30-degree rotation about the World X axis:

RX (30)

Related Keyword
DX real-valued function
DY real-valued function

DZ real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 451

SCALE transformation function

SCALE transformation function

Syntax

SCALE (transformation BY scale_factor)

Function
Return a transformation value equal to the transformation parameter with the position

scaled by the scale factor.

Parameters

transformation Transformation expression that is to be scaled.

scale_factor Real-valued expression that is used to scale the transformation
parameter value.

Details
The value returned is equal to the value of the input transformation parameter value except
that the X, Y, and Z position components are multiplied by the scale factor parameter. The
rotation components have their values unchanged.
Example
If the transformation x has the value:
(200, 150, 100, 10, 20, 30)
then executing the instruction:
SET y = SCALE (x BY 1.25)
results in the transformation y receiving the value:

(250, 187.5, 125, 10, 20, 30)

Related Keyword

SHIFT transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 452

SCALE.ACCEL system switch

SCALE.ACCEL system switch

Syntax
..« SCALE.ACCEL [robot_num]

Function

Enable or disable the scaling of acceleration and deceleration as a function of program speed,
as long as the program speed is below a preset threshold.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected. If the index
is omitted or zero in an ENABLE or DISABLE command or instruction,
the settings for all robots are altered. Otherwise, only the setting for
the specified robot is affected.

Details
This switch is enabled when the eV+ system is initialized.

If robot_num is omitted or zero in an ENABLE or DISABLE command or instruction, the
settings for all robots are altered. Otherwise, only the setting for the specified robot is
affected. If robot_num is omitted or zero when the switch is accessed with the SWITCH real-
valued function, the setting of the switch for robot #1 is returned.

When this switch is enabled and the program speed is below the preset threshold value, the
effective acceleration and deceleration for that robot are calculated as follows:

effective acceleration = program speed * acceleration setting
effective deceleration = program speed * deceleration setting

where acceleration_setting and deceleration_setting are values set by the ACCEL
instruction.

For example, if program speed 50% is specified and the threshold value is 150, the effective
acceleration and deceleration are 50% of the current settings. If the program speed is higher
than 150% with the threshold set to 150, the current acceleration and deceleration are
used without modification.

All robot modules have the SCALE.ACCEL speed threshold set by default to a very large
value, effectively forcing the scaling of accelerations and deceleration for all speeds when this
switch is enabled.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 453

SCALE.ACCEL system switch

the SCALE.ACCEL limit is used and SCALE.ACCEL is enabled, the
robot is driven at much higher rates of acceleration and
deceleration, as compared toV+ 11.0.

f CAUTION: For program speeds over 100%, if the default setting for

If the SCALE.ACCEL switch is disabled for a robot, accelerations and decelerations are not
scaled based on the program speed. In this case, accelerations and decelerations are higher
than normal at reduced speeds. This is particularly noticeable at very slow speeds. As a result,
robot motions may appear to be more rough or jerky.

Example

Turn off acceleration scaling for robot #2:

DISABLE SCALE.ACCEL[2]

Related Keywords
ACCEL program instruction
ACCEL real-valued function
SPEED monitor command
SPEED program instruction

SCALE.ACCEL.ROT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 454

SCALE.ACCEL.ROT system switch

SCALE.ACCEL.ROT system switch

Syntax
... SCALE.ACCEL.ROT [robot_num]

Function

Specify whether or not the SCALE.ACCEL switch takes into account the Cartesian rotational
speed during straight-line motions.

Parameter
robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected. If the index
is omitted or zero in an ENABLE or DISABLE command or
instruction, the settings for all robots are altered. Otherwise, only
the setting for the specified robot is affected.
Details

If SCALE.ACCEL.ROT is enabled for a selected robot, the lesser of the Cartesian linear and
rotational speeds is used to scale acceleration and deceleration during straight-line motions.
If SCALE.ACCEL.ROT is disabled for a selected robot, only the Cartesian linear speed is
considered when SCALE.ACCEL is in effect. The SCALE.ACCEL.ROT switch is enabled for all
robots by default when the eV+ system is initialized.

Example

Cause SCALE.ACCEL not to use Cartesian rotational speed for robot #2:

DISABLE SCALE.ACCEL.ROTI[2]

Related Keywords
ACCEL program instruction
ACCEL real-valued function
SCALE.ACCEL system switch
SPEED monitor command

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 455

SELECT program instruction

SELECT program instruction

Syntax
SELECT device_type = unit

Function

Select a unit of the named device for access by the current task.

Usage Considerations

The SELECT instruction needs to be used only if there are multiple devices of the same type
connected to your system controller. This option is available only if your system is equipped
with the eV+ Extensions option.

The SELECT instruction affects only the task in which the instruction is executed.

The instruction SELECT ROBOT can be executed only if there is no robot attached to the
current task. (If there is any doubt about whether or not a robot is attached, a program
should execute a DETACH instruction before executing the SELECT instruction.)

Parameters

device_type Keyword that identifies the type of device that is to be selected.
Valid device types are ROBOT, VISION, and FORCE (which must be
specified without quotation marks). The device-type keyword can
be abbreviated.

unit Real value, variable, or expression (interpreted as an integer) that
specifies the particular unit to be selected. The values that are
accepted depend on the configuration of the system.

Details

SELECT ROBOT

In a multiple-robot system, this program instruction selects the robot with which the current
task is to communicate. (The SELECT monitor command specifies which robot the eV+
monitor is to access.) The program instruction specifies which robot receives motion
instructions (for example, APPROACH and MOVE) and returns robot-related information (for
example, for the HERE function).

Each time a program task begins execution, robot #1 is automatically selected. If a robot is
selected, information about the robot (for example, its current position) can be accessed. In
order for a program to move a robot, however, the robot must be selected and attached
(with the ATTACH instruction).

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 456

SELECT program instruction

As an example, if robot #2 is selected by a SELECT instruction, all motion instructions
executed by the current task are directed to that robot (until another SELECT instruction is
issued). Also, all robot-related functions (such as HERE) return information about robot #?2.

NOTE: As a convenience, when task #0 is executed, robot #1 is automatically selected
and attached when program execution begins.

In order for any task to change its selected robot, no robot can be attached by the task. More
than one task can have a particular robot selected, but only one task can have a robot
attached. If a robot is already attached to a different task, an ATTACH waits or generates an
error (depending on the mode parameter for the ATTACH instruction).

SELECT VISION

In a system with multiple vision systems, this instruction selects the vision system with
which the current task is to communicate. (The SELECT monitor command specifies which
vision system the eV+ monitor is to access.) This program instruction specifies which vision
system receives vision instructions (for example, ENABLE VISION) and also which system
returns vision-related information (for example, from the VSTATUS function).

The vision system currently selected by the monitor is automatically selected when a
program begins execution.

SELECT FORCE

In a system with multiple force sensors, this monitor command or program instruction
selects the force sensor with which the current task is to communicate. The SELECT monitor
command specifies which force sensor the eV+ monitor is to access. The program instruction
specifies which force sensor receives force instructions (for example, FORCE.READ) and
returns force sensor-related information (for example, for the LATCH function).

Each time a program task begins execution, force sensor #1 is automatically selected.

Example

SELECT ROBOT Example Program

The following program selects robot #3 and moves it. This program is normally not executed
by task #0, since that task is attached to robot #1 by default.

.PROGRAM test ()
SELECT ROBOT = 3 ;Select robot 3
ATTACH (0,1) ;Get control of robot 3 without waiting
IF IOSTAT(0) < 0 THEN
TYPE /B, "Error attaching robot: ", S$ERROR(IOSTAT(0))

PAUSE
END
MOVE x ;Move robot 3 to location "x"
MOVE y ;Move robot 3 to location "y"

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 457

SELECT program instruction

DETACH ;Detach robot 3
.END

SELECT VISION Example Program

The following program segment selects vision system #2 and accesses that system.

.PROGRAM vision.2()

SELECT VISION = 2 ;Select vision system #2

ENABLE VISION ;Enable that vision system

VSTATUS (1,0) status|[] ;Get status information

IF status[0] == 0 THEN ;If vision system is idle,
VPICTURE (1) ;take a picture

END

.END

SELECT FORCE Example Program

The following program selects force sensor #2 and reads the current forces from it.

.PROGRAM test ()
SELECT FORCE = 2 ;Select force sensor 2
FORCE.READ f[] ;Read sensor 2 forces
TYPE "Current forces on sensor", SELECT (FORCE), /S
TYPE "are ", /FO0.1, f[0], /X1, f[1]1, /X1, f[2]
.END

Related Keywords
ATTACH program instruction
SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 458

SELECT real-valued function

SELECT real-valued function

Syntax

SELECT (device_type, mode)

Function

Return the unit number that is currently selected by the current task for the device named.

Parameters

device_type

mode

Details

Keyword that identifies the type of device that is to be selected.
The only valid type is ROBOT. The device-type keyword can be
abbreviated.

Optional real value, variable, or expression (interpreted as an
integer) that specifies the mode for the function. If this parameter
is omitted or has the value 0, the function returns the number of
the unit currently selected, or 0 if no unit is selected. If mode has
the value -1, the function returns the total number of units
available for the specified device.

This function returns either the number of the specified device that is currently selected, or
the total number of devices connected to the system controller. Multiple devices of the same
type are supported only if your system includes the optional eV+ Extensions software.

If the eV+ system is not configured to control a robot, the selected robot is always #1, and
the total number of robots is zero.

SELECT(ROBOT) returns the number of the currently selected robot. SELECT(ROBOT,-1)
returns the maximum robot number in a eV+ system.

Examples

Return the unit number of the robot selected for the current task:

our.robot

= SELECT (ROBOT)

Return the total number of robots connected to the controller:

num.robots = SELECT (ROBOT,-1)

Related Keywords

SELECT monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 459

SELECT real-valued function

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 460

SET program instruction

SET program instruction

Syntax

SET location_var = location_value

Function

Set the value of the location variable on the left equal to the location value on the right of the
equal sign.

Parameters

location_var Single location variable or compound transformation that ends with
a transformation variable.

location_value Location value of the same type as the location variable on the left
of the equal sign, defined by a variable or function (or compound
transformation).

Details

An error message is generated if the right-hand side is not defined or is not the same type of
location representation (that is, transformation or precision point).

If a compound transformation is specified to the left of the equal sign, only its right-most
relative transformation is defined. An error condition results if any other transformation in
the compound transformation is not already defined.

If a transformation variable is specified on the left-hand side, the right-hand side can contain
a transformation, a compound transformation, or a transformation function.
Examples

Set the value of the transformation pick equal to the location of corner plus the location of
shift relative to corner:

SET pick = corner:shift
Set the value of the precision point # place equal to that of the precision point #post:
SET #place = f#post

Set the value of the transformation part to the current robot location, relative to the
transformation pallet.

SET pallet:part = HERE

Set the value of locl to X =550,Y =450,Z2=750,y=0,p=180,r =45:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 461

SET program instruction

SET locl = TRANS (550, 450, 750, 0, 180, 45)

Related Keywords
HERE monitor command

HERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 462

SET.EVENT program instruction

SET.EVENT program instruction

Syntax
SET.EVENT task, flag

Function

Set an event associated with the specified task.

Parameters

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be set. The valid range is
0 to 27, inclusive. If this parameter is omitted, the number of the
current task is used.

NOTE: All 28 tasks are available only in systems equipped with the
optional eV+ Extension.

flag Not used, defaultsto 1.

Details

This instruction sets the event associated with the specified task. For example, if a task had
been suspended by a WAIT.EVENT 1 instruction, executing the SET.EVENT instruction for
that task causes it to resume execution (during the next available time slice for which it is
eligible).

Related Keywords

CLEAR.EVENT program instruction

GET.EVENT real-valued function

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 463

#SET.POINT precision point function

#SET.POINT precision point function

Syntax
#SET.POINT

Function

Return the commanded joint-angle positions computed by the trajectory generator during
the last trajectory-evaluation cycle.

Usage Considerations

The name "set.point" cannot be used as a program or variable name.

Details

For each trajectory-evaluation cycle, joint-angle positions are computed, converted to
encoder counts, and sent to the servos as the commanded motor positions. You can use this
function to capture these positions.

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 464

SETBELT program instruction

SETBELT program instruction

Syntax

SETBELT %belt_var = expression

Function

Set the encoder offset of the specified belt variable equal to the value of the expression.

Usage Considerations
This option is available only if your system is equipped with the eV+ Extensions option.
The BELT switch must be enabled for this instruction to be executed.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. (See Details section and WARNING below.)

SETBELT cannot be executed while the robot is moving relative to the specified belt variable.

The belt variable referenced must have been defined already using a DEFBELT instruction.

Parameters

%belt_var Name of belt variable associated with the encoder offset to be set.

expression Real-valued expression that specifies a signed 24-bit encoder offset
value.

Details

When computing the position of a belt associated with a belt variable, eV+ subtracts the
offset value from the current belt position value and uses the difference, modulo
16,777,216.

The expression value is normally a signed number in the range -8,388,608 to 8,388,607. If
the number is outside this range, its value modulo 16,777,216 is used.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. This must be done each time the robot will perform a
sequence of motions relative to the belt, and must be done shortly before the first motion of
such a sequence.

going to track the belt, to make sure the difference between the current
belt position (as returned by the BELT function) and the belt position of
the specified belt variable does not exceed 8,388,607 (“"H7FFFFF)

f WARNING: It is important to execute SETBELT each time the robot is

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 465

SETBELT program instruction

during active belt tracking. Unpredictable robot motion may result if the
difference does exceed this value while tracking the belt.

The SETBELT instruction can be used to synchronize robot motion with the encoder value
latched by an external signal or by the AdeptVision system. See the LATCHED real-valued
function and the DEVICE real-valued function for more information.

Example

The following example waits for a digital signal and then sets the belt position to zero. That is
done by setting the belt offset equal to the current belt position. Finally, the robot is moved
onto the belt.

WAIT sig(1001)
SETBELT S%$beltl = BELT (%beltl)
MOVES S%$beltl:pickup

Related Keywords

BELT real-valued function
BELT system switch

DEFBELT program instruction
DEVICE real-valued function
LATCHED real-valued function
WINDOW program instruction
WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 466

SETDEVICE program instruction

SETDEVICE program instruction

Syntax

SETDEVICE (type, unit, error, command) p1, p2, ...

Function

Initialize a device or set device parameters. (The actual operation performed depends on the
device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types and
commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder

1 = (Not used)

2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision

5 = 1394 bus (for Omron Adept use only)

unit Real value, variable, or expression (interpreted as an integer) that
indicates the device unit number. The value must be in the range 0
to (max -1), where max is the maximum number of devices of the
specified type. The value should be 0 if there is only one device of the
given type.

error Optional real variable that receives a standard system error number
that indicates if this instruction succeeded or failed. If this parameter
is omitted, any device error stops program execution. If an error
variable is specified, the program must explicitly check it to detect
errors.

command Real value, variable, or expression that specifies which device
command or parameters are being set by this instruction. Some
commands are standard and recognized by all devices. Other
commands apply only to particular device types.

pl, p2,... Optional real values, variables, or expressions, the values of which
are sent to the device as data for a command. The number of
parameters specified and their meanings depend upon the particular

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 467

SETDEVICE program instruction

device type being accessed.

Details

SETDEVICE is a general-purpose instruction for initializing external devices. It initializes the
software and allows various parameters associated with the device to be set.

Two standard SETDEVICE commands are recognized by all devices:

command =0 Initialize device
This command should be issued once before accessing the device
with any other command. Normally, no additional parameters are
required, but some device types may permit them.

command =1 Reset device
This command resets the device. Normally no additional parameters
are required, but some device types may permit them.

See the supplementary documentation for specific devices for details and examples.

For information on using the SETDEVICE instruction to access external encoders, see the
section External Encoder Device in the
eV+ Language User's Guide.

Related Keywords
DEVICE program instruction

DEVICE real-valued function

DEVICES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 468

SHIFT transformation function

SHIFT transformation function

Syntax

SHIFT (transformation BY x_shift, y_shift, z_shift)

Function

Return a transformation value resulting from shifting the position of the transformation
parameter by the given shift amounts.

Parameters

transformation Transformation expression that is to be shifted.

x_shift Optional real-valued expressions that are added to the
respective position components of the transformation
y_shift parameter.
z_shift
Details

The value returned is equal to the value of the input transformation parameter value except
that the three shift parameter values are added to the X, Y, and Z position components. If
any shift parameter is omitted, its value is assumed to be zero.
Example
If the transformation x has the value:
(200, 150, 100, 10, 20, 30)
then executing the instruction:
SET y = SHIFT(x BY 5,-5,10)
results in the transformation y receiving the value:

(205, 145, 110, 10, 20, 30)

Related Keywords
SCALE transformation function

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 469

SIG real-valued function

SIG real-valued function

Syntax

SIG (signal_num, ..., signal_num)

Function

Returns the logical AND of the states of the indicated digital signals.

Parameter

signal_num Real-valued expression that evaluates to a digital I/O or internal
signal number. A negative value indicates negative logic for that
signal.

Details

Returns a TRUE (-1) or FALSE (0) value obtained by performing a logical AND of the states of
all the indicated digital signals. That is, SIG will return TRUE if all the specified signal states
are TRUE. Otherwise, SIG will return FALSE.

The magnitude of each signal_num parameter determines which digital or internal signal is
to be considered. Signals 1 - 8 and 33 - 512 are digital outputs. Signals 1001 - 1012 and
1033 - 1512 are digital inputs. Signals 2001 to 2512 are internal (software) inputs or
outputs. Only digital signals that are actually installed can be used. You can use the IO
monitor command (or the SIG.INS function) to check your current digital I/O configuration.
Signals 3001 and 3002 refer to the robot selected by the current task. Signal 3001 is the
state of the hand-close solenoid. Signal 3002 is the state of the hand-open solenoid.

If the sign of a signal_num parameter is positive, the signal is interpreted as being TRUE if
it has a high value. If the sign of a signal_num parameter is negative, the signal is
interpreted as being TRUE if it has a low value.

NOTE: SIG(0) returns a value of TRUE.

Example

Assume that the following digital I/O signals are installed and have the indicated values.
o Inputsignal 1001 is On
« Inputsignal 1004 is Off
« Input signal 33 is Off

The following SIG function references return the indicated values:

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 470

SIG real-valued function

SIG(1001) ;Returns -1.0 (TRUE)
SIG(1004) ;Returns 0.0 (FALSE)
SIG(-1004) ;Returns -1.0 (TRUE)
SIG(1001,1004) ;Returns 0.0 (FALSE)
SIG(1001,-1004) ;Returns -1.0 (TRUE)

Related Keywords
BITS monitor command
BITS program instruction
BITS real-valued function

I0 monitor command
RESET monitor command
RUNSIG program instruction
SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 471

SIG.INS real-valued function

SIG.INS real-valued function

Syntax
SIG.INS (signal_num)

Function

Return an indication of whether a digital I/O signal is installed in the system, or whether a
software signal is available in the system.

Parameter

signal_num Real-valued expression that defines the number of the digital I/O or
software signal to check. (The absolute value is used, so negative
signal numbers are allowed.)

Details

This function returns TRUE (-1) if the specified digital I/O or software signal is available for
use by the system. Otherwise, FALSE (0.0) is returned. The function always returns TRUE if
signal_number is zero.

This function can be used to make sure the digital I/O signals are installed as expected by the
application program.
Example

The following program segment checks whether digital I/O signal #12 is installed as an input
signal (referenced as signal #1012). A message is displayed on the system terminal if the
signal is not configured correctly:

in.sig = 1012

IF NOT SIG.INS(in.sig) THEN

TYPE "Digital I/O signal ", in.sig, "is not installed"
END

Related Keywords
BITS monitor command
BITS program instruction
BITS real-valued function
IO monitor command
RESET monitor command

RUNSIG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 472

SIG.INS real-valued function

SIG.INS real-valued function
SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 473

SIGN real-valued function

SIGN real-valued function

Syntax
SIGN (value)

Function
Return the value 1, with the sign of the value parameter.
Parameter

value Real-valued expression.

Details

This function returns -1.0 if the value of the parameter is less than zero. If the parameter
value is greater than or equal to zero, +1.0 is returned.

Example
SIGN (0) ;Returns 1.0
SIGN(0.123) ;Returns 1.0
SIGN (-5.462) ;Returns -1.0
SIGN (1.3125E+2) ;Returns 1.0

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 474

SIGNAL program instruction

SIGNAL program instruction

Syntax

SIGNAL signal_num, ..., signal_num

Function

Turn on or off external digital output signals or internal software signals.

Parameter

signal_num Real-valued expression that evaluates to a digital output or internal
signal number. A positive value indicates turn on; a negative value
indicates turn off. (SIGNAL ignores parameters with a zero value.)

Details

The magnitude of a signal_num parameter determines which digital or internal signal is to
be considered. Only digital output signals (numbered from 1 to 8 and 33 to 512) and internal
(software) signals (numbered from 2001 to 2512) can be specified. Only digital signals that
are actually installed and configured as outputs can be used. To check your current digital I/O
configuration, use the I0 monitor command. Signals 3001 and 3002 refer to the robot
selected by the current task. Signal 3001 is the state of the hand-close solenoid. Signal 3002
is the state of the hand-open solenoid.

If the sign of the signal_num parameter is positive, the signal is turned on. If the sign of
the signal_num parameter is negative, the signal is turned off.

NOTE: All eV+ digital output instructions do not wait for a 16 millisecond eV+ cycle, they
are turned on immediately. However, digital inputs are checked every 16 milliseconds by
the eV+ operating system. Allowing the possibility to turn on and off a signal before the
system can read the output.

Examples

Turn off the external output signal specified by the value of the variable reset (assuming the
value of reset is positive), and turn on external output signal #4:

SIGNAL -reset, 4

Turn external output signal #1 off, external output signal #4 on, and internal software
signal #2010 on:

SIGNAL -1, 4, 2010

eV+Language Reference Guide, v2.x, 18319-000 Rev A
Page 475

SIGNAL program instruction

Related Keywords

BITS monitor command

BITS program instruction
BITS real-valued function

I0 monitor command
NOOVERLAP program instruction
OVERLAP program instruction
RESET monitor command
RUNSIG program instruction
SIG real-valued function
SIG.INS real-valued function

SIGNAL monitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 476

SIN real-valued function

SIN real-valued function

Syntax

SIN (value)

Function

Return the trigonometric sine of a given angle.

Usage Considerations
The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values may cause
a loss of accuracy in the