

Introduction

Our sincere thanks for your purchase of this OMRON YRCX robot controller.

This manual describes robot program commands and related information for using OMRON YRCX

robot controllers. Be sure to read this manual carefully as well as related manuals and comply with

their instructions for using the OMRON robot controllers safely and correctly.

For details on how to operate OMRON robot controllers, refer to the separate controller user's

manual that comes with the OMRON robot controller.

Applicable controllers: YRCX

Safety precautions

Be sure to read before using

Before using the OMRON robot controller, be sure to read this manual and related manuals, and

follow their instructions to use the robot controller safely and correctly.

Warning and caution items listed in this manual relate to OMRON robot controllers.

When this robot controller is used in a robot controller system, please take appropriate safety

measures as required by the user’s individual system.

This manual classifies safety caution items and operating points into the following levels, along with

symbols for signal words “CAUTION” and “NOTE”.

CAUTION
"CAUTION" indicates a potentially hazardous situation which, if not avoided, could

result in minor or moderate injury or damage to the equipment or software.

NOTE
Primarily explains function differences, etc., between software versions.

Explains robot operation procedures in a simple and clear manner.

Note that the items classified into “CAUTION” might result in serious injury depending on the

situation or environmental conditions.

Keep this manual carefully so that the operator can refer to it when needed. Also make sure that this

manual reaches the end user.

MEMO

CONTENTS YRCX
Programming Manual

T-1

Introduction

Safety precautions

Chapter 1 Writing Programs

 1 The OMRON Robot Language 1-1

 2 Characters 1-1

 3 Program Basics 1-1

 4 Program Names 1-2

 5	 Identifiers	 1-4

 6	 LABEL	Statement	 1-4

 7 Comment 1-5

 8 Command Statement Format 1-5

Chapter 2 Constants

 1 Outline 2-1

 2 Numeric constants 2-1

2.1 Integer constants 2-1
2.2 Real constants 2-1

 3 Character constants 2-2

Chapter 3 Variables

 1 Outline 3-1

 2 User Variables & System Variables 3-2

2.1 User Variables 3-2
2.2 System Variables 3-2

 3 Variable Names 3-3

3.1 Dynamic Variable Names 3-3
3.2 Static Variable Names 3-3

 4	 Variable	Types	 3-4

CONTENTS YRCX
Programming Manual

T-2

4.1 Numeric variables 3-4
4.2 Character variables 3-4

 5 Array variables 3-5

 6 Value Assignments 3-5

 7 Type Conversions 3-6

 8 Value Pass-Along & Reference Pass-Along 3-6

 9 System Variables 3-7

9.1 Point variable 3-7
9.2 Shift variable 3-8
9.3 Parallel input variable 3-8
9.4 Parallel output variable 3-9
9.5 Internal output variable 3-10
9.6 Arm lock output variable 3-11
9.7 Timer output variable 3-12
9.8 Serial input variable 3-13
9.9 Serial output variable 3-14
9.10 Serial word input 3-15
9.11 Serial double word input 3-15
9.12 Serial word output 3-16
9.13 Serial double word output 3-16

 10 Bit Settings 3-17

 11 Valid range of variables 3-18

11.1 Valid range of dynamic (array) variables 3-18
11.2 Valid range of static variables 3-18

 12 Clearing variables 3-19

12.1 Clearing dynamic variables 3-19
12.2 Clearing static variables 3-19

Chapter	4	 Expressions	and	Operations

 1	 Arithmetic	operations	 4-1

1.1 Arithmetic operators 4-1
1.2 Relational operators 4-1
1.3 Logic operations 4-2
1.4 Priority of arithmetic operation 4-3
1.5 Data format conversion 4-3

CONTENTS YRCX
Programming Manual

T-3

 2	 Character	string	operations	 4-4

2.1 Character string connection 4-4
2.2 Character string comparison 4-4

 3	 Point	data	format	 4-5

 4	 DI/DO	conditional	expressions	 4-6

Chapter 5 Multiple Robot Control

 1 Overview 5-1

 2 Command list with a robot setting 5-2

Chapter 6 Multi-tasking

 1 Outline 6-1

 2	 Task	definition	method	 6-1

 3 Task status and transition 6-2

3.1 Starting tasks 6-2
3.2 Task scheduling 6-3
3.3 Condition wait in task 6-4
3.4 Suspending tasks (SUSPEND) 6-5
3.5 Restarting tasks (RESTART) 6-5
3.6 Deleting tasks 6-6
3.7 Stopping tasks 6-7

 4	 Multi-task	program	example	 6-8

 5 Sharing the data 6-8

 6 Cautionary Items 6-9

Chapter 7 Sequence fnction

 1 Sequence function 7-1

 2 Creating a sequence program 7-1

2.1 Programming method 7-1
2.2 Compiling 7-3

 3	 Executing	a	sequence	program	 7-4

3.1 Sequence program STEP execution 7-4

CONTENTS YRCX
Programming Manual

T-4

 4 Programming a sequence program 7-5

4.1 Assignment statements 7-5
4.2 Input/output variables 7-5
 4.2.1 Input variables 7-5
 4.2.2 Output variables 7-6
4.3	 Timer	definition	statement	 7-7
4.4 Logical operators 7-7
4.5 Priority of logic operations 7-8
4.6	 Sequence	program	specifications	 7-8

Chapter 8 Robot Language Lists

 How to read the robot language table 8-1

 Command list in alphabetic order 8-2

		 Operation-specific	 8-7

 Functions: in alphabetic order 8-13

		 Functions:	operation-specific	 8-16

 1 ABS Acquires absolute values 8-18

 2 ABSRPOS Acquires the machine reference value (axes: mark method) 8-19

 3 ACCEL Specifies/acquires the acceleration coefficient parameter 8-20

 4 ARCHP1 / ARCHP2 Specifies/acquires the arch position parameter 8-21

 5 ARMCND Acquires the current arm status 8-23

 6 ARMSEL Sets/acquires the current hand system selection 8-24

 7 ARMTYP Sets/acquires the hand system selection during program reset 8-25

 8 ASPEED Sets/acquires the AUTO movement speed of a specified robot 8-26

 9 ATN / ATN2 Acquires the arctangent of the specified value 8-27

 10 AXWGHT Sets/acquires the axis tip weight 8-28

 11 CALL Calls a sub-procedure 8-29

 12 CHANGE Switches the hand 8-30

 13 CHGPRI Changes the priority ranking of a specified task 8-31

 14 CHR$ Acquires a character with the specified character code 8-32

 15 CLOSE Closes the specified General Ethernet Port 8-33

 16 COS Acquires the cosine value of a specified value 8-34

 17 CURTQST Acquires the current torque value of a specified axis
to the rated torque 8-35

 18 CURTRQ Acquires the current torque of the specified axis 8-36

CONTENTS YRCX
Programming Manual

T-5

 19 CUT Terminates another task which is currently being executed 8-37

 20 DATE$ Acquires the date 8-38

 21 DECEL Specifies/acquires the deceleration rate parameter 8-39

 22 DEF FN Defines functions which can be used by the user 8-40

 23 DEGRAD Angle conversion (degree → radian) 8-41

 24 DELAY Program execution waits for a specified period of time 8-42

 25 DI Acquires the input status from the parallel port 8-43

 26 DIM Declares array variable 8-44

 27 DIST Acquires the distance between 2 specified points 8-45

 28 DO Outputs to parallel port or acquires the output status 8-46

 29 DRIVE Executes absolute movement of specified axes 8-48

 30 DRIVEI Moves the specified robot axes in a relative manner 8-52

 31 END SELECT Ends the SELECT CASE statement 8-57

 32 END SUB Ends the sub-procedure definition 8-58

 33 ERR / ERL Acquires the error code / error line number 8-59

 34 ETHSTS Acquires the Ethernet port status 8-60

 35 EXIT FOR Terminates the FOR to NEXT statement loop 8-61

 36 EXIT SUB Terminates the sub-procedure defined by the SUB to END SUB
statement 8-62

 37 EXIT TASK Terminates its own task which is in progress 8-63

 38 FOR to NEXT Performs loop processing until the variable exceeds
the specified value 8-64

 39 GEPSTS Acquires the General Ethernet Port status 8-65

 40 GOSUB to RETURN Jumps to a subroutine 8-66

 41 GOTO Executes an unconditional jump to the specified line 8-67

 42 HALT Stops the program and performs a reset 8-68

 43 HALTALL Stops all programs and performs reset 8-69

 44 HAND Defines the hand 8-70

44.1 For SCARA Robots 8-70

 45 HOLD Temporarily stops the program 8-73

 46 HOLDALL Temporality stops all programs 8-74

 47 IF Evaluates a conditional expression value, and executes
the command in accordance with the conditions 8-75

47.1 Simple IF statement 8-75

47.2 Block IF statement 8-76

 48 INPUT Assigns a value to a variable specified from the programming box 8-77

 49 INT Truncates decimal fractions 8-79

CONTENTS YRCX
Programming Manual

T-6

 50 JTOXY Performs axis unit system conversions (pulse → mm) 8-80

 51 LEFT$ Extracts character strings from the left end 8-81

 52 LEFTY Sets the SCARA robot hand system as a left-handed system 8-82

 53 LEN Acquires a character string length 8-83

 54 LET Assigns values to variables 8-84

 55 LO Arm lock output or acquires the output status 8-87

 56 LOCx Specifies/acquires point data for a specified axis or shift data
for a specified element 8-89

 57 LSHIFT Left-shifts a bit 8-91

 58 MCHREF Acquires the machine reference value
(axes: sensor method / stroke-end method) 8-92

 59 MID$ Acquires a character string from a specified position 8-93

 60 MO Outputs a specified value to the MO port
or acquires the output status 8-94

 61 MOTOR Controls the motor power status 8-96

 62 MOVE Performs absolute movement of robot axes 8-97

 63 MOVEI Performs relative movement of robot axes 8-112

 64 MOVET Performs relative movement of all robot axes in tool coordinates 8-122

 65 MTRDUTY Acquires the motor load factor of the specified axis 8-132

 66 OFFLINE Sets a specified communication port to the "offline" mode 8-133

 67 ON ERROR GOTO Jumps to a specified label when an error occurs 8-134

 68 ON to GOSUB Executes the subroutine specified by the <expression> value 8-135

 69 ON to GOTO Jumps to the label specified by the <expression> value 8-136

 70 ONLINE Sets the specified communication port to the "online" mode 8-137

 71 OPEN Opens the specified General Ethernet Port 8-138

 72 ORD Acquires a character code 8-139

 73 ORGORD Specifies/acquires the robot's return-to-origin sequence 8-140

 74 ORIGIN Performs return-to-origin 8-141

 75 OUT Turns ON the specified port output 8-142

 76 OUTPOS Specifies/acquires the OUT enable position parameter of the robot 8-143

 77 PATH Specifies the motion path 8-145

 78 PATH END Ends the path setting 8-151

 79 PATH SET Starts the path setting 8-152

 80 PATH START Starts the PATH motion 8-155

 81 PDEF Defines the pallet 8-159

 82 PGMTSK Acquires the task number
in which a specified program is registered 8-160

CONTENTS YRCX
Programming Manual

T-7

 83 PGN Acquires the program number from a specified program name 8-161

 84 PMOVE Executes a pallet movement command for the robot 8-162

 85 Pn Defines points within a program 8-166

 86 PPNT Creates pallet point data 8-168

 87 PRINT Displays the specified expression value at the programming box 8-169

 88 PSHFRC Specifies/acquires the pushing force parameter 8-170

 89 PSHJGSP Specifies/acquires the push judge speed parameter 8-171

 90 PSHMTD Specifies/acquires a pushing type parameter 8-172

 91 PSHRSLT Acquires the status when PUSH statement ends 8-173

 92 PSHSPD Specifies/acquires the push speed parameter 8-174

 93 PSHTIME Specifies/acquires the push time parameter 8-175

 94 PUSH Executes a pushing operation for specified axes 8-176

 95 RADDEG Performs a unit conversion (radians → degrees) 8-181

 96 REM Inserts a comment 8-182

 97 RESET Turns OFF the bits of specified ports, or clears variables 8-183

 98 RESTART Restarts another task during a temporary stop 8-184

 99 RESUME Resumes program execution after error recovery processing 8-185

 100 RETURN Processing which was branched by GOSUB, is returned
to the next line after GOSUB 8-186

 101 RIGHT$ Extracts a character string
from the right end of another character string 8-187

 102 RIGHTY Sets the SCARA robot hand system as a right-handed system 8-188

 103 RSHIFT Shifts a bit value to the right 8-189

 104 SELECT CASE to END SELECT Executes the specified command block in accordance with the
<expression> value 8-190

 105 SEND Sends readout file data to the write file 8-191

 106 SERVO Controls the servo status 8-193

 107 SET Turns the bit at the specified output port ON 8-194

 108 SETGEP Sets the General Ethernet Port 8-195

 109 SGI Assigns /acquires the value
to a specified integer type static variable 8-196

 110 SGR Assigns /acquires the value to a specified real type static variable 8-197

 111 SHARED Enables sub-procedure referencing without passing on the variable 8-198

 112 SHIFT Sets the shift coordinates 8-199

 113 SI Acquires specified SI status 8-200

 114 SID Acquires a specified serial input's double-word information 8-201

 115 SIN Acquires the sine value for a specified value 8-202

CONTENTS YRCX
Programming Manual

T-8

 116 SIW Acquires a specified serial input's word information 8-203

 117 Sn Defines the shift coordinates in the program 8-204

 118 SO Outputs a specified value
to serial port or acquires the output status 8-205

 119 SOD Outputs a specified serial output's double-word information
or acquires the output status 8-207

 120 SOW Outputs a specified serial output's word information
or acquires the output status 8-208

 121 SPEED Changes the program movement speed 8-209

 122 SQR Acquires the square root of a specified value 8-210

 123 START Starts a new task 8-211

 124 STR$ Converts a numeric value to a character string 8-212

 125 SUB to END SUB Defines a sub-procedure 8-213

 126 SUSPEND Temporarily stops another task which is being executed 8-215

 127 SWI Switches the program being executed 8-216

 128 TAN Acquires the tangent value for a specified value 8-217

 129 TCOUNTER Timer & counter 8-218

 130 TIME$ Acquires the current time 8-219

 131 TIMER Acquires the current time 8-220

 132 TO Outputs a specified value to the TO port
or acquires the output status 8-221

 133 TOLE Specifies/acquires the tolerance parameter 8-222

 134 TORQUE Specifies/acquires the maximum torque command value 8-223

 135 TSKPGM Acquires the program number
which is registered in a specified task number 8-225

 136 VAL Converts character strings to numeric values 8-226

 137 WAIT Waits until the conditional expression is met 8-227

 138 WAIT ARM Waits until the robot axis operation is completed 8-228

 139 WEIGHT Specifies/acquires the tip weight parameter 8-229

 140 WEND Ends the WHILE statement's command block 8-230

 141 WHERE Acquires the arm's current position (pulse coordinates) 8-231

 142 WHILE to WEND Repeats an operation for as long as a condition is met 8-232

 143 WHRXY Acquires the arm's current position in Cartesian coordinates 8-233

 144 XYTOJ Converts the Cartesian coordinate data ("mm")
to joint coordinate data ("pulse") 8-234

CONTENTS YRCX
Programming Manual

T-9

Chapter 9 PATH Statements

 1 Overview 9-1

 2 Features 9-1

 3 How to use 9-1

 4 Cautions when using this function 9-2

Chapter	10	Data	file	description

 1 Overview 10-1

1.1	 Data	file	types	 10-1
1.2 Cautions 10-2

 2	 Program	file	 10-3

2.1 All programs 10-3
2.2 One program 10-4

 3	 Point	file	 10-5

3.1 All points 10-5
3.2 One point 10-7

 4	 Point	comment	file	 10-8

4.1 All point comments 10-8
4.2 One point comment 10-9

 5	 Point	name	file	 10-10

5.1 All point names 10-10
5.2 One point name 10-11

 6	 Parameter	file	 10-12

6.1 All parameters 10-12
6.2 One parameter 10-14

 7	 Shift	coordinate	definition	file	 10-16

7.1 All shift data 10-16
7.2	 One	shift	definition	 10-17

 8	 Hand	definition	file	 10-18

8.1 All hand data 10-18
8.2	 One	hand	definition	 10-19

CONTENTS YRCX
Programming Manual

T-10

 9	 Pallet	definition	file	 10-20

9.1	 All	pallet	definitions	 10-20
9.2	 One	pallet	definition	 10-22

 10	 General	Ethernet	port	file	 10-24

 11	 Input/output	name	file	 10-26

11.1 All input/output name data 10-26
11.2 One input/output type 10-27
11.3 One input/output port 10-28
11.4 One input/output bit 10-29

 12 Area	check	output	file	 10-30

12.1 All area check output data 10-30
12.2	 One	area	check	output	definition	 10-31

 13	 All	file	 10-32

13.1	 All	file	 10-32

 14	 Program	directory	file	 10-34

14.1 Entire program directory 10-34
14.2 One program directory 10-35

 15	 Parameter	directory	file	 10-36

15.1 Entire parameter directory 10-36

 16	Machine	reference	file	 10-37

16.1 Machine reference (axes: sensor method, stroke-end method) 10-37
16.2 Machine reference (axes: mark method) 10-38

 17	 System	configuration	information	file	 10-39

 18	 Version	information	file	 10-40

 19	 Option	board	file	 10-41

 20	Self	check	file	 10-42

 21	Alarm	history	file	 10-43

 22	Remaining	memory	size	file	 10-45

 23	Variable	file	 10-46

CONTENTS YRCX
Programming Manual

T-11

 24	Constant	file	 10-52

24.1 One character string 10-52

 25	Array	variable	file	 10-53

25.1 All array variables 10-53
25.2 One array variable 10-54

 26	DI	file	 10-55

26.1 All DI information 10-55
26.2 One DI port 10-56

 27	DO	file	 10-57

27.1 All DO information 10-57
27.2 One DO port 10-58

 28	MO	file	 10-59

28.1 All MO information 10-59
28.2 One MO port 10-60

 29	LO	file	 10-61

29.1 All LO information 10-61
29.2 One LO port 10-62

 30	TO	file	 10-63

30.1 All TO information 10-63
30.2 One TO port 10-64

 31	 SI	file	 10-65

31.1 All SI information 10-65
31.2 One SI port 10-66

 32	SO	file	 10-67

32.1 All SO information 10-67
32.2 One SO port 10-68

 33	SIW	file	 10-69

33.1 All SIW data 10-69
33.2 One SIW data 10-70

 34	SOW	file	 10-71

34.1 All SOW 10-71
34.2 One SOW data 10-72

CONTENTS YRCX
Programming Manual

T-12

 35	EOF	file	 10-73

35.1 EOF data 10-73

 36	Serial	port	communication	file	 10-74

36.1	 Serial	port	communication	file	 10-74

 37	Ethernet	port	communication	file	 10-75

37.1	 Ethernet	port	communication	file	 10-75

Chapter	11	User	program	examples

 1 Basic operation 11-1

1.1 Directly writing point data in program 11-1
1.2 Using point numbers 11-2
1.3 Using shift coordinates 11-3
1.4 Palletizing 11-4

1.4.1 Calculating point coordinates 11-4

1.4.2 Utilizing pallet movement 11-6

1.5 DI/DO (digital input and output) operation 11-7

 2 Application 11-8

2.1 Pick and place between 2 points 11-8
2.2 Palletizing 11-10
2.3 Pick and place of stacked parts 11-12
2.4 Parts inspection (Multi-tasking example) 11-14
2.5 Sealing 11-17
2.6 Connection to an external device through RS-232C (example 1) 11-18
2.7 Connection to an external device through RS-232C (example 2) 11-19

Chapter 12 Online commands

 1 Online Command List 12-1

1.1	 Online	command	list:	Operation-specific	 12-2
1.2 Online command list: In alphabetic order 12-6

 2 Operation and setting commands 12-9

2.1 Program operations 12-9
2.2 MANUAL mode operation 12-17
2.3 Alarm reset 12-18
2.4	 Clearing	output	message	buffer	 12-19
2.5 Setting input data 12-20
2.6 Change access level 12-21
2.7 Setting input data 12-22

CONTENTS YRCX
Programming Manual

T-13

 3 Reference commands 12-23

3.1 Acquiring return-to-origin status 12-23
3.2 Acquiring the servo status 12-24
3.3 Acquire motor power status 12-24
3.4 Acquiring the access level 12-25
3.5 Acquiring the break point status 12-25
3.6 Acquiring the mode status 12-26
3.7 Acquiring the communication port status 12-26
3.8 Acquiring the main program number 12-27
3.9 Acquiring the sequence program execution status 12-27
3.10 Acquiring the version information 12-28
3.11 Acquiring the tasks in RUN or SUSPEND status 12-28
3.12 Acquiring the tasks operation status 12-29
3.13 Acquiring the task end condition 12-29
3.14 Acquiring the shift status 12-30
3.15 Acquiring the hand status 12-30
3.16 Acquiring the remaining memory capacity 12-31
3.17 Acquiring the alarm status 12-31
3.18 Acquiring the emergency stop status 12-32
3.19 Acquiring the manual movement speed 12-32
3.20 Acquiring the inching movement amount 12-33
3.21 Acquiring the last reference point number (current point number) 12-33
3.22 Acquiring the output message 12-34
3.23 Acquiring the input data 12-34
3.24 Acquiring various values 12-35

 4 Operation commands 12-37

4.1 Absolute reset 12-37
4.2 Return-to-origin operation 12-38
4.3 Manual movement: inching 12-39
4.4 Manual movement: jog 12-40

 5	 Data	file	operation	commands	 12-41

5.1 Copy operations 12-41
5.2 Erase 12-42
5.3 Rename program 12-47
5.4 Changing the program attribute 12-47
5.5 Initialization process 12-48
5.6 Data readout processing 12-50
5.7 Data write processing 12-51

CONTENTS YRCX
Programming Manual

T-14

 6 Utility commands 12-52

6.1	 Setting	the	sequence	program	execution	flag	 12-52
6.2 Setting the date 12-52
6.3 Setting the time 12-53

 7	 Individual	execution	of	robot	language	 12-54

 8 Control codes 12-55

Chapter	13	Appendix

 1 Reserved word list 13-1

 2 Changes from conventional models 13-3

1 Program name 13-3
A) FUNCTION 13-3
B) _SELECT 13-3
2 Multiple Robot Control 13-3
3 Multi-tasking 13-4
4 Robot Language 13-4
5 Online commands 13-5
6	 Data	file	 13-5

Index

Chapter 1

Writing Programs

1 1 The OMRON Robot Language1-1
2 2 Characters ..1-1
3 3 Program Basics ...1-1
4 4 Program Names ..1-2
5 5 Identifiers ...1-4
6 6 LABEL Statement1-4
7 7 Comment ..1-5
8 8 Command Statement Format1-5

1

2

3

4

5

6

The OMRON Robot Language 1-1

 1 The OMRON Robot Language

The OMRON robot language is similar to BASIC (Beginner’s All-purpose Symbolic Instruction Code)

and makes even complex robot movements easy to program. This manual explains how to write

robot control programs with the OMRON robot language, including actual examples on how its

commands are used.

 2 Characters

The characters and symbols used in the OMRON robot language are shown below.

Only 1-byte characters can be used.

 • Alphabetic characters

 A to Z, a to z

 • Numbers

 0 to 9

 • Symbols

 () [] + - * / ^ = < > & | ~ _ % ! # $: ; , . " ' { }@ ?

 • katakana (Japanese phonetic characters)

• Katakana (Japanese phonetic characters) cannot be entered from a programming box. Katakana

can be used when communicating with a host computer (if it handles katakana).

• Spaces are also counted as characters (1 space = 1 character).

 3 Program Basics

Programs are written in a "1 line = 1 command" format, and every line must contain a command.

Blank lines (lines with no command) will cause an error when the program is executed. A line-feed

on the program's final line creates a blank line, so be careful not to do so.

To increase the program's efficiency, processes which are repeated within the program should be

written as subroutines or sub-procedures which can be called from the main routine. Moreover,

same processing items which occurs in multiple programs should be written as common routines

within a program named [COMMON], allowing those processing items to be called from multiple

programs.

User functions can be defined for specific calculations. Defined user functions are easily called,

allowing even complex calculations to be easily performed.

Multi-task programs can also be used to execute multiple command statements simultaneously in a

parallel processing manner.

Using the above functions allows easy creation of programs which perform complex processing.

MEMO

NOTE
 • For details regarding sub-
procedure, refer to "11
CALL" and "125 SUB to
END SUB" in Chapter 8.

NOTE
 • For details regarding user
defined functions, refer to
"22 DEF FN" in Chapter 8.

1-2 Chapter 1 Writing Programs

1

2

3

4

5

6

 4 Program Names

Each program to be created in the robot controller must have its own name.

Programs can be named as desired provided that the following conditions are satisfied:

 ■ Program names may contain no more than 32 characters, comprising a combination of

alphanumeric characters and underscores (_).
 ■ Each program must have a unique name (no duplications).

The 2 program names shown below are reserved for system operations, and programs with these

names have a special meaning.

A) SEQUENCE

B) COMMON

The functions of these programs are explained below.

A) SEQUENCE

 Functions Unlike standard robot programs, the YRCX Controller allows the execution of high-

speed processing programs (sequence programs) in response to robot inputs and outputs

(DI, DO, MO, LO, TO, SI, SO). Specify a program name of "SEQUENCE" to use this

function, thus creating a pseudo PLC within the controller.

 When the controller is in the AUTO or MANUAL mode, a SEQUENCE program can

be executed in fixed cycles (regardless of the program execution status) in response to

dedicated DI10 (sequence control input) input signals, with the cycle being determined

by the program capacity. For details, refer to "4.6 Sequence program specifications" in

Chapter 7.

 This allows sensors, push-button switches, and solenoid valves, etc., to be monitored

and operated by input/output signals.

 Moreover, because the sequence programs are written in robot language, they can

easily be created without having to use a new and unfamiliar language.

SAMPLE

DO(20)=~DI(20)

DO(25)=DI(21) AND DI(22)

MO(26)=DO(26) OR DO(25)

 :

 REFERENCE For details, refer to "4.6 Sequence program specifications" in Chapter 7.

1

2

3

4

5

6

Program Names 1-3

B) COMMON

 Functions A separate "COMMON" program can be created to perform the same processing in

multiple robot programs. The common processing routine which has been written in the

COMMON program can be called and executed as required from multiple programs.

This enables efficient use of the programming space.

 The sample COMMON program shown below contains two processing items (obtaining

the distance between 2 points (SUB *DISTANCE), and obtaining the area (*AREA))

which are written as common routines, and these are called from separate programs

(SAMPLE 1 and SAMPLE 2).

 When SAMPLE1 or SAMPLE2 is executed, the SUB *DISTANCE (A!,B!,C!) and the

*AREA routine are executed.

SAMPLE

Program name: SAMPLE1

 X!=2.5

 Y!=1.2

 CALL *DISTANCE(X!,Y!,REF C!)

 GOSUB *AREA

 PRINT C!,Z!

 HALT

Program name: SAMPLE2

 X!=5.5

 Y!=0.2

 CALL *DISTANCE(X!,Y!,REF C!)

 GOSUB *AREA

 PRINT C!,Z!

 HALT

Program name: COMMON ··············· Common routine

 SUB *DISTANCE(A!,B!,C!)

 C!=SQR(A!^2+B!^2)

 END SUB

 *AREA:

 Z!=X!*Y!

 RETURN

 REFERENCE For details, refer to the command explanations given in this manual.

1-4 Chapter 1 Writing Programs

1

2

3

4

5

6

 5 Identifiers

"Identifiers" are a combination of characters and numerals used for label names, variable names,

and procedure names. Identifiers can be named as desired provided that the following conditions

are satisfied:

 ■ Identifiers must consist only of alphanumeric characters and underscores (_). Special symbols

cannot be used, and the identifier must not begin with an underscore (_).
 ■ The identifier length must not exceed 32 characters (all characters beyond the 32th character are

ignored).
 ■ The maximum number of usable identifiers varies depending on the length of the identifiers.

When all identifier length is 32 characters, the number is at the maximum. Local variables can be

used up to 128 (in one program task) and global variables can be used up to 512.
 ■ Variable names must not be the same as a reserved word, or the same as a name defined as

a system variable. Moreover, variable name character strings must begin with an alphabetic

character. For label names, however, the "*" mark may be immediately followed by a numeric

character.

SAMPLE

LOOP, SUBROUTINE, GET_DATA

 REFERENCE For details regarding reserved words, refer to Chapter 13 "1. Reserved word list",

 regarding system variables, refer to Chapter 3 "9 System Variables".

 6 LABEL Statement

Defines a label on a program line.

Format

*label:

A label must always begin with an asterisk (*), and it must be located at the beginning of the line.

Although a colon (:) is required at the end of the label when defining it, this mark is not required

when writing a jump destination in a program.

1. A label must begin with an alphabetic or numeric character.

2. Alphanumeric and underscore (_) can be used as the remaining label characters. Special

symbols cannot be used.

3. The label must not exceed 32 characters (all characters beyond the 32th character are ignored).

SAMPLE

*ST: ····················· *ST label is defined.

 MOVE P,P0

 DO(20) = 1

 MOVE P,P1

 DO(20) = 0

GOTO *ST ····················· Jumps to *ST.

HALT

1

2

3

4

5

6

Comment 1-5

 7 Comment

Characters which follow REM or an apostrophe (') are processed as a comment. Comment

statements are not executed. Moreover, comments may begin at any point in the line.

SAMPLE

REM *** MAIN PROGRAM ***

 (Main program)

’*** SUBROUTINE ***

 (Subroutine)

HALT ’HALT COMMAND ············ This comment may begin at any point in

the line.

 8 Command Statement Format

Format

label: statement operand

One robot language command must be written on a single line and arranged in the format shown

below:

 • The shaded section can be omitted.

 • The italic items should be written in the specific format.

 • Items surrounded by | | are selectable.

 • The label can be omitted. When using a label, it must always be preceded by an asterisk (*),

and it must end with a colon (:) (the colon is unnecessary when a label is written as a branching

destination).

For details regarding labels, refer to "6 LABEL Statement" in this Chapter.

 • Operands may be unnecessary for some commands.

 • Programs are executed in order from top to bottom unless a branching instruction is given.

1 line may contain no more than 255 characters.

Chapter 2

Constants

1 1 Outline ...2-1
2 2 Numeric constants2-1
3 3 Character constants2-2

1

2

3

4

5

6

Outline 2-1

 1 Outline

Constants can be divided into two main categories: "numeric types" and "character types". These

categories are further divided as shown below.

Category Type Details/Range
Numeric
type

Integer
type

Decimal constants
-2,147,483,648 to 2,147,483,647

Binary constants
&B0 to &B11111111

Hexadecimal constants
&H80000000 to &H7FFFFFFF

Real type Single-precision real numbers
-999,999.9 to +999,999.9

Exponential format single-precision real numbers
-1.0×1038 to +1.0×1038

Character
type

Character
string

Alphabetic, numeric, special character, or katakana (Japanese)
character string of 255 bytes or less.

 2 Numeric constants

2.1 Integer constants

1. Decimal constants
 Integers from -2,147,483,648 to 2,147,483,647 may be used.

2. Binary constants
 Unsigned binary numbers of 8 bits or less may be used. The prefix "&B" is attached to the

 number to define it as a binary number.

 Range: &B0 (decimal: 0) to &B11111111 (decimal: 255)

3. Hexadecimal constants
 Signed hexadecimal numbers of 32 bits or less may be used. The prefix "&H" is attached to the

 number to define it as a hexadecimal number.

 Range: &H80000000 (decimal: -2,147,483,648) to &H7FFFFFFF (decimal: 2,147,483,647)

2.2 Real constants

1. Single-precision real numbers
 Real numbers from -999999.9 to +999999.9 may be used.

 • 7 digits including integers and decimals. (For example, ".0000001" may be used.)

2. Single-precision real numbers in exponent form
 Numbers from -1.0×1038 to +1.0×1038 may be used.

 • Mantissas should be 7 digits or less, including integers and decimals.

Examples: -1. 23456E-12

 3. 14E0

 1. E5

• An integer constant range of –1,073,741,824 to 1,073,741,823 is expressed in signed

hexadecimal number as &H80000000 to &H7FFFFFFF.
MEMO

2-2 Chapter 2 Constants

1

2

3

4

5

6

 3 Character constants

Character type constants are character string data enclosed in double quotation marks ("). The

character string must not exceed 255 bytes in length, and it may contain upper-case alphabetic

characters, numerals, special characters, or katakana (Japanese) characters.

To include a double quotation mark (") in a string, enter two double quotation marks in succession.

SAMPLE

"OMRON ROBOT"

"EXAMPLE OF""A""" ·················· EXAMPLE OF "A"

PRINT "COMPLETED"

"OMRON ROBOT"

Chapter 3

Variables

1 1 Outline ...3-1
2 2 User Variables & System Variables3-2
3 3 Variable Names ..3-3
4 4 Variable Types ..3-4
5 5 Array variables ...3-5
6 6 Value Assignments3-5
7 7 Type Conversions3-6
8 8 Value Pass-Along & Reference Pass-Along..........3-6
9 9 System Variables3-7
10 10 Bit Settings ...3-17
11 11 Valid range of variables.........................3-18
12 12 Clearing variables3-19

1

2

3

4

5

6

Outline 3-1

 1 Outline

There are "user variables" which can be freely defined, and "system variables" which have pre-

defined names and functions.

User variables consist of "dynamic variables" and "static variables". "Dynamic variables" are cleared

at program editing, program resets, and program switching. "Static variables" are not cleared unless

the memory is cleared. The names of dynamic variables can be freely defined, and array variables

can also be used.

Variables can be used simply by specifying the variable name and type in the program. A

declaration is not necessarily required. However, array variables must be pre-defined by a DIM

statement.

Dynamic variables Numeric type

Numeric type

Character string variables

Integer variables

Real variables (single-precision)

Integer variables

Real variables (single-precision)

Static variables

Input-output variables

Point variables

Shift variables

Output variables

Input variables

Character type

U
s

e
r

 v
a

r
ia

b
le

s
S

ys
te

m
 v

ar
ia

b
le

s

User variables & system variables

33301-R9-00

 REFERENCE For details regarding array variables, refer to "5 Array variables" in this Chapter.

1

2

3

4

5

6

3-2 Chapter 3 Variables

 2 User Variables & System Variables

2.1 User Variables

Numeric type variables consist of an "integer type" and a "real type", and these two types have

different usable numeric value ranges. Moreover, each of these types has different usable variables

(character string variables, array variables, etc.), and different data ranges, as shown below.

Category Variable Type Details/Range
Dynamic
variables

Numeric type Integer type variables
-2,147,483,648 to 2,147,483,647
(Signed hexadecimal constants: &H80000000 to
&H7FFFFFFF)

Real variables (single-precision)
-1.0×1038 to +1.0×1038

Character type Character string variables
Alphabetic, numeric, special character, or katakana
(Japanese) character string of 255 bytes or less.

Static
variables

Numeric type Integer type variables
-2,147,483,648 to 2,147,483,647

Real variables (single-precision)
-1.0×1038 to +1.0×1038

Array
variables

Numeric type Integer array variables
-2,147,483,648 to 2,147,483,647

Real array variables (single-precision)
-1.0×1038 to +1.0×1038

Character type Character string array variables
Alphabetic, numeric, special character, or katakana
(Japanese) character string of 255 bytes or less.

2.2 System Variables

As shown below, system variables have pre-defined names which cannot be changed.

Category Type Details Specific Examples
I npu t / ou tpu t
variables

Input variables External signal / status inputs DI, SI, SIW, SID

Output variables External signal / status outputs DO, SO, SOW, SOD
Point variables Handles point data Pnnnn
Shift variables Specifies the shift coordinate No. as

a numeric constant or expression
Sn

 REFERENCE For details, refer to "9 System Variables" in this Chapter.

NOTE
 • A r r a y v a r i a b l e s a r e
dynamic variables.

1

2

3

4

5

6

Variable Names 3-3

 3 Variable Names

3.1 Dynamic Variable Names

Dynamic variables can be named as desired, provided that the following conditions are satisfied:

 ■ The name must consist only of alphanumeric characters and underscores (_). Special symbols

cannot be used.
 ■ The name must not exceed 32 characters (all characters beyond the 32th character are ignored).
 ■ The name must begin with an alphabetic character.

SAMPLE

COUNT ························ Use is permitted

COUNT123 ························ Use is permitted

2COUNT ························ Use is not permitted

 ■ Variable names must not be the same as a reserved word.
 ■ Variable names must not begin with characters used for system variable names (pre-defined

variables) and user-defined function. These characters include the following:

FN, DIn, DOn, MOn, LOn, TOn, SIn, SOn, Pn, Sn, Hn ("n" denotes a numeric value)

SAMPLE

COUNT ························ Use is permitted

ABS ························ Use is not permitted

 (Reserved word)

FNAME ························ Use is not permitted

 (FN: user-defined function)

S91 ························ Use is not permitted

 (Sn: pre-defined variable)

 REFERENCE For details regarding reserved words, refer to Chapter 13 "1 Reserved word list".

3.2 Static Variable Names

Static variable names are determined as shown below, and these names cannot be changed.

Variable Type Variable Name
Integer variable SGIn (n: 0 to 31)
Real variable SGRn (n: 0 to 31)

Static variables are cleared only when initializing is executed by online command.

 REFERENCE For details regarding clearing of static variables, refer to "12 Clearing variables" in

this Chapter.

1

2

3

4

5

6

3-4 Chapter 3 Variables

 4 Variable Types

The type of variable is specified by the type declaration character attached at the end of the variable

name.

However, because the names of static variables are determined based on their type, no type

declaration statement is required.

Type Declaration Character Variable Type Specific Examples
$ Character variables STR1$
% Integer variables CONT0%, ACT%(1)
! Real variables CNT1!, CNT1

• If no type declaration character is attached, the variable is viewed as a real type.

• Variables using the same identifier are recognized to be different from each other by the type of

each variable.

 • ASP_DEF% Integer variable) • ASP_DEF Real variable → ASP_DEF% and ASP_DEF are different variables.

 • ASP_DEF! Real variable) • ASP_DEF Real variable → ASP_DEF! and ASP_DEF are the same variables.

4.1 Numeric variables

Integer variables

Integer variables and integer array elements can handle an integer from -2,147,483,648 to

2,147,483,647 (in signed hexadecimal, this range is expressed as &H80000000 to &H7FFFFFFF).

Examples: R1% = 10

 R2%(2) = R1% + 10000

Real variables

Real variables and real array elements can handle a real number from –1.0×1038 to 1.0×1038.

Examples: R1! = 10.31

 R2!(2)= R1% + 1.98E3

4.2 Character variables

Character variables and character array elements can handle a character string of up to 255

characters.

Character strings may include alphabetic characters, numbers, symbols and katakana (Japanese

phonetic characters).

Examples: R1$ = "OMRON"

 R2$(2) = R1$ + "MOTOR" ··········· "OMRON MOTOR"

MEMO

NOTE
 • When a real number is
assigned to an integer
t y p e v a r i a b l e , t h e
decimal value is rounded
off to the nearest whole
number. For details, refer
to Chapter 4 "1.5 Data
format conversion".

NOTE
 • The "!" used in real variables
may be omitted .

1

2

3

4

5

6

Array variables 3-5

 5 Array variables

Both numeric and character type arrays can be used at dynamic variables.

Using an array allows multiple same-type continuous data to be handled together.

Each of the array elements is referenced in accordance with the parenthesized subscript which

appears after each variable name. Subscripts may include integers or expressions in up to 3

dimensions.

In order to use an array, Array variables must be declared by DIM statement in advance, and the

maximum number of elements which can be used is the declared subscripts + 1 (0 ~ number of

declared subscripts).

• All array variables are dynamic variables. (For details regarding dynamic variables, refer to "11

Valid range of variables" in this Chapter.)

• The length of an array variable that can be declared with the DIM statement depends on the

program size.

Format

variable name % (expression, expression, expression)

 !

 $

SAMPLE

A%(1) ························ Integer array variable

DATA!(1,10,3) ······················ Single-precision real array variable

(3-dimension array)

STRING$(10) ························ Character array variable

 6 Value Assignments

An assignment statement (LET) can also be used to assign a value to a variable.

• "LET" directly specifies an assignment statement, and it can always be omitted.

Format

LET variable = expression

Write the value assignment target variable on the left side, and write the assignment value or

the expression on the right side. The expression may be a constant, a variable, or an arithmetic

expression, etc.

 REFERENCE For details, refer to Chapter 8 "54 LET (Assignment Statement)"

MEMO

MEMO

1

2

3

4

5

6

3-6 Chapter 3 Variables

 7 Type Conversions

When different-type values are assigned to variables, the data type is converted as described below.

 • When a real number is assigned to an integer type:

The decimal value is rounded off to the nearest whole number.

 • When an integer is assigned to a real type:

The integer is assigned as it is, and is handled as a real number.

 • When a numeric value is assigned to a character string type:

The numeric value is automatically converted to a character string.

 • When a character string is assigned to numeric type:

This assignment is not possible,and an error will occur at the program is execution. Use the "VAL"

command to convert the character string to a numeric value, and that value is then assigned.

 8 Value Pass-Along & Reference Pass-Along

A variable can be passed along when a sub-procedure is called by a CALL statement. This pass-

along can occur in either of two ways: as a value pass-along, or as a reference pass-along.

Value pass-along

With this method, the variable's value is passed along to the sub-procedure. Even if this value is

changed within the sub-procedure, the content of the call source variable is not changed.

A value pass-along occurs when the CALL statement's actual argument specifies a constant, an

expression, a variable, or an array element (array name followed by (subscript)).

Reference pass-along

With this method, the variable's reference (address in memory) is passed along to the sub-

procedure. If this value is changed within the sub-procedure, the content of the call source variable

is also changed.

A reference pass-along occurs when the CALL statement's actual argument specifies an entire array

(an array named followed by parenthetical content), or when the actual argument is preceded by

"REF".

　　

X%=5

CALL *TEST(X%)

PRINT X%

HALT

’SUB ROUTINE

SUB *TEST(A%)

 A%=A%*10

END SUB

X%=5

CALL *TEST(REF X%)

PRINT X%

HALT

’SUB ROUTINE

SUB *TEST(A%)

 A%=A%*10

END SUB

The X% value remains as "5". The X% value becomes "50".

Value pass-along Reference pass-along

Execution result: Execution result:

Value pass-along & reference pass-along

33302-R7-00

1

2

3

4

5

6

System Variables 3-7

 9 System Variables

The following system variables are pre-defined, and other variable names must not begin with the

characters used for these system variable names.

Variable Type Format Meaning
Point variable Pnnn / P [expression] Specifies a point number
Shift variable Sn / S [expression] Specifies the shift number as a constant

or as an expression

Parallel input variable DI(mb), DIm(b) Parallel input signal status
Parallel output variable DO(mb), DOm(b) Parallel output signal setting and status
Internal output variable MO(mb), MOm(b) Controller's internal output signal setting

and status

Arm lock output variable LO(mb), LOm(b) Axis-specific movement prohibit
Timer output variable TO(mb), TOm(b) For sequence program's timer function
Serial input variable SI(mb), SIm(b) Serial input signal status
Serial output variable SO(mb), SOm(b) Serial output signal setting and status
Serial word input SIW(m) Serial input's word information status
Serial double-word input SID(m) Serial input's double-word information

status

Serial word output SOW(m) Serial output's word information status
Serial double-word output SOD(m) Serial output's double-word information

status

9.1 Point variable
 This variable specifies a point data number with a numeric constant or expression.

Format

Pnnnnn or P[expression]

 Values n: Point number 0 to 9

 Functions A point data number is expressed with a "P" followed by a number of 5 digits or less, or

an expression surrounded by brackets ([expression])

 Point numbers from 0 to 29999 can be specified with point variables.

Examples: P0

 P110

 P[A]

 P[START_POINT]

 P[A(10)]

1

2

3

4

5

6

3-8 Chapter 3 Variables

9.2 Shift variable
 This variable specifies a shift coordinate number with a numeric constant or expression.

Format

Snn or S[expression]

 Values n: Shift number 0 to 9

 Functions A shift number is expressed with an "S" followed by a 2-digits number or an expression

surrounded by brackets ([expression]). As a shift number, 0 to 39 can be specified.

Examples: S1

 S[A]

 S[BASE]

 S[A(10)]

• The "shift coordinate range" for each shift number can be changed from the programming box.

9.3 Parallel input variable
 This variable is used to indicate the status of parallel input signals.

Format 1

DIm(b,···,b)

Format 2

DI(mb,···,mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27

 b : bit definition 0 to 7

 If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Examples: A%=DI1()

 →Input status of ports DI(17) to DI(10)

 is assigned to variable A%.

 0 to 255 integer can be assigned to A%.

 A%=DI5(7,4,0)

 →Input status of DI(57), DI(54) and

 DI(50) is assigned to variable A%.

 (If all above signals are 1(ON), then A%=7.)

 A%=DI(27,15,10)

 →Input status of DI(27), DI(15) and

 DI(10) is assigned to variable A%.

 (If all above signals except DI(10) are 1 (ON), then A%=6.)

 WAIT DI(21)=1

 →Waits for DI(21) to change to 1(ON).

• When specifying multiple bits, specify them from left to right in descending order (high to low).

• A "0" is input if an input port does not actually exist.

MEMO

MEMO

1

2

3

4

5

6

System Variables 3-9

9.4 Parallel output variable
 Specifies the parallel output signal or indicates the output status.

Format 1

DOm(b,···,b)

Format 2

DO(mb,···,mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27

 b : bit definition 0 to 7

 If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Examples: A%=DO2()

 →Output status of DO(27) to DO(20) is

 assigned to variable A%.

 A%=DO5(7,4,0)

 →Output status of DO(57), DO(54) and

 DO(50) is assigned to variable A%.

 (If all above signals are 1(ON), then A%=7.)

 A%=DO(37,25,20)

 →Output status of DO(37), DO(25) and

 DO(20) is assigned to variable A%.

 (If all above signals except DO(20) are 1

 (ON), then A%=6.)

 DO3()=B%

 →Changes to a status in which the DO(37)

 to DO(30) output can be indicated by B%.

 For example, if B% is "123": If a binary

 number is used, "123" will become

 "01111011", DO(37) and DO(32) will become

 "0", and the other bits will become "1".

 DO4(5,4,0)=&B101

 →DO(45) and DO(40) become "1", and DO(44) becomes "0".

• When specifying multiple bits, specify them from left to right in descending order (high to low).

• If an output port does not actually exist, the data is not output externally.
MEMO

1

2

3

4

5

6

3-10 Chapter 3 Variables

9.5 Internal output variable
 Specifies the controller's internal output signals and indicates the signal status.

Format 1

MOm(b,···,b)

Format 2

MO(mb,···,mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27, 30 to 33

 b : bit definition 0 to 7

 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

 Functions Internal output variables which are used only in the controller, can set the status and refer.

 These variables are used for signal communications, etc., with the sequence program.

 Ports 30 to 33 are for dedicated internal output variables which can only be referenced

(they cannot be changed).

1. Port 30 indicates the status of origin sensors for axes 1 to 8 (in order from bit 0). Port
 31 indicates the status of origin sensors for axes 9 to 16 (in order from bit 0).
 Each bit sets to "1" when the origin sensor turns ON, and to "0" when OFF.

2. Port 34 indicates the HOLD status of axes 1 to 8 (in order from bit 0). Port 35 indicates
 the HOLD status of axes 9 to 16 (in order from bit 0).
 Each bit sets to "1" when the axis is in HOLD status, and to "0" when not.

Bit 7 6 5 4 3 2 1 0
Port 30
Port 31

Axis 8
Axis 16

Axis 7
Axis 15

Axis 6
Axis 14

Axis 5
Axis 13

Axis 4
Axis 12

Axis 3
Axis 11

Axis 2
Axis 10

Axis 1
Axis 9

Origin sensor status 0: OFF / 1: ON (Axis 1 is not connected)
Port 34
Port 35

Axis 8
Axis 16

Axis 7
Axis 15

Axis 6
Axis 14

Axis 5
Axis 13

Axis 4
Axis 12

Axis 3
Axis 11

Axis 2
Axis 10

Axis 1
Axis 9

Hold status 0: RELEASE / 1: HOLD (Axis 1 is not connected)

• Axes where no origin sensor is connected are always ON.

• Being in HOLD status means that the axis movement is stopped and positioned within the target

point tolerance while the servo is still turned ON.

• When the servo turns OFF, the HOLD status is released.

• Axes not being used are set to "1" (HOLD).

• The status of each axis in order from the smallest axis number used by robot 1 is maintained.

Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, bits

0 to 4 of port 30 indicate the status of axes 1 to 5 of robot 1, bits 5 to 7 of port 30 indicate the

status of axes 1 to 3 of robot 2, and bit 0 of port 31 indicates the status of axis 4 of robot 2.

MEMO

1

2

3

4

5

6

System Variables 3-11

Examples: A%=MO2 ()

 →Internal output status of MO(27) to

 MO(20) is assigned to variable A%.

 A%=MO5(7,4,0)

 →Internal output status of MO(57), MO(54)

 and MO(50) is assigned to variable A%.

 (If all above signals are 1 (ON), then A%=7.)

 A%=MO(37,25,20)

 →Internal output status of MO(37), MO(25)

 and MO(20) is assigned to variable A%.

 (If all above signals except MO(25) are 1 (ON), then A%=5.)

• When specifying multiple bits, specify them from left to right in descending order (high to low).

9.6 Arm lock output variable
 Specifies axis-specific movement prohibit settings.

Format 1

LOm(b,···,b)

Format 2

LO(mb,···,mb)

 Values m : port number 0, 1

 b : bit definition 0 to 7

 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

 Functions The contents of this variable can be set the status and referred to as needed.

 Of Port 0, bits 0 to 7 respectively correspond to axes 1 to 8, and of port 1, bits 0 to

respectively correspond to axes 9 to 16.

 When this bit is ON, movement on the corresponding axis is prohibited.

Examples:

A%=LO0()

 →Arm lock status of LO(07) to LO(00) is assigned to variable A%.

A%=LO0(7,4,0)

 →Arm lock status of LO(07), LO(04) and LO(00) is assigned to variable A%.

 (If all above signals are 1(ON), then A%=7.)

A%=LO0(06,04,01)

 →Arm lock status of LO(06), LO(04) and LO(01) is assigned to variable A%.

 (If all above signals except LO(01) are 1(ON), then A%=6.)

LO1()=&B0010

 →LO(11) is set to 1(ON),then movement of axis 10 is prohibited.

LO1(2,0)=3

 →LO(12) and LO(10) are set to 1(ON),

 then movements of axes 11 and 9 are prohibited.

MEMO

1

2

3

4

5

6

3-12 Chapter 3 Variables

• When specifying multiple bits, specify them from left to right in descending order (high to low).

• Servo OFF to ON switching is disabled if an arm lock is in effect at even 1 axis.

• When performing JOG movement in the MANUAL mode, axis movement is possible at axes

where an arm lock status is not in effect, even if an arm lock status is in effect at another axis.

• When executing movement commands from the program, etc., the "12.401 Arm locked" error

will occur if an arm lock status is in effect at the axis in question.

• Arm locks sequentially correspond to axes in order from the axis with the smallest axis number

used by robot 1.

Example) In the case of a configuration where robot 1 has 5 axes and robot 2 has 4 axes, the

status of axes 1 to 5 of robot 1 is set by bits 0 to 4 of port 0, the status of axes 1 to 3 of robot 2

is set by bits 5 to 7 of port 0, and the prohibition of motion of axis 4 of robot 2 is set by bit 0 of

port 1.

9.7 Timer output variable
 This variable is used in the timer function of a sequence program.

Format 1

TOm(b,···,b)

Format 2

TO(mb,···,mb)

 Values m : port number 0, 1

 b : bit definition 0 to 7

 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

 Functions The contents of this variable can be changed and referred to as needed.

 Timer function can be used only in the sequence program. If this variable is output in a

normal program, it is an internal output.

For details regarding sequence program usage examples, refer to the timer usage examples given in

"4.2 Input/output variables" in Chapter 7.

Examples: A%=TO0()

 →Status of TO(07) to TO(00) is assigned

 to variable A%.

 A%=TO0(7,4,0)

 →Status of TO(07), TO(04) and TO(00) is

 assigned to variable A%.

 (If all above signals are 1 (ON), then A%=7.)

 A%=TO(06,04,01)

 →Status of TO(06), TO(04) and TO(01) is

 assigned to variable A%.

 (If all above signals except TO(01) are 1

 (ON), then A%=6.)

• When specifying multiple bits, specify them from left to right in descending order (high to low).

MEMO

MEMO

1

2

3

4

5

6

System Variables 3-13

9.8 Serial input variable
 This variable is used to indicate the status of serial input signals.

Format 1

SIm(b,···,b)

Format 2

SI(mb,···,mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27

 b : bit definition 0 to 7

 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Examples: A%=SI1()

 →Input status of ports SI(17) to SI(10)

 is assigned to variable A%.

 A%=SI5(7,4,0)

 →Input status of SI(57), SI(54) and

 SI(50) is assigned to variable A%.

 (If all above signals are 1(ON), then A%=7.)

 A%=SI(27,15,10)

 →Input status of SI(27), SI(15) and

 SI(10) is assigned to variable A%.

 (If all above signals except SI(10) are 1^

 (ON), then A%=6.)

 WAIT SI(21)=1

 →Waits until SI(21) sets to 1 (ON).

• When specifying multiple bits, specify them from left to right in descending order (high to law).

• A "0" is input if a serial port does not actually exist.
MEMO

1

2

3

4

5

6

3-14 Chapter 3 Variables

9.9 Serial output variable
 This variable is used to define the serial output signals and indicate the output status.

Format 1

SOm(b,···,b)

Format 2

SO(mb,···,mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27

 b : bit definition 0 to 7

 • If the bit definition is omitted in Format 1, bits 0 to 7 are all selected.

Examples: A%=SO2()

 →Output status of SO(27) to SO(20) is

 assigned to variable A%.

 A%=SO5(7,4,0)

 →Output status of SO(57), SO(54) and

 SO(50) is assigned to variable A%.

 (If all above signals turn 1(ON), then A%=7.)

 A%=SO(37,25,20)

 →Output status of SO(37), SO(25) and

 SO(20) is assigned to variable A%.

 (If all above signals except SO(25) turn 1(ON), then A%=5.)

 SO3()=B%

 →Changes the output status of SO(37) to

 SO(30) to one indicated by B%.

 (If B% is 123, 123 is expressed B01111011 as a binary number,

 that means SO(37) and SO(32) turn 0(OFF), the other bits turn 1(ON).)

 SO4(5,4,0)=&B101

 →DO(45) and DO(40) turn 1(ON), DO(44) turns 0(OFF).

• When specifying multiple bits, specify them from left to right in descending order (high to law).

• If a serial port does not actually exist, the data is not output externally.
MEMO

1

2

3

4

5

6

System Variables 3-15

9.10 Serial word input
 This variable indicates the status of the serial input word information.

Format

SIW(m)

 Values m : port number 2 to 15

 The acquisition range is 0 (&H0000) to 65,535 (&HFFFF).

Examples: A%=SIW(2)

 →The input status from SIW (2) is

 assigned to variable A%.

 A%=SIW(15)

 →The input status from SIW (15) is

 assigned to variable A%.

• The information is handled as unsigned word data.

• "0" is input if a serial port does not actually exist.

9.11 Serial double word input
 This variable indicates the state of the serial input word information as a double word.

Format

SID(m)

 Values m : port number 2, 4, 6, 8, 10, 12, 14

 The acquisition range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFFF).

Examples: A%=SID(2)

 →The input status from SIW (2) , SIW (3)

 is assigned to variable A%.

 A%=SID(14)

 →The input status from SIW (14), SIW (15)

 is assigned to variable A%.

• The information is handled as signed double word data.

• "0" is input if a serial port does not actually exist.

• The lower port number data is placed at the lower address.

 For example, if SIW(2) =&H2345, SIW(3) =&H0001, then SID(2) =&H00012345.

MEMO

MEMO

1

2

3

4

5

6

3-16 Chapter 3 Variables

9.12 Serial word output
 Outputs to the serial output word information or indicates the output status.

Format

SOW(m)

 Values m : port number 2 to 15

 The output range is 0 (&H0000) to 65,535 (&HFFFF).

 Note that if a negative value is output, the low-order word information will be output

after being converted to hexadecimal.

Examples: A%=SOW(2)

 →The output status of SOW (2) is

 assigned to variable A%.

 SOW(15)=A%

 →The contents of variable A% are

 assigned in SOW (15).

 If the variable A% value exceeds the output range,

 the low-order word information will be assigned.

 SOW(15)=-255

 →The contents of -255 (&HFFFFFF01) are

 assigned to SOW (15).

 -255 is a negative value, so the low-order

 word information (&HFF01) will be assigned.

• The information is handled as unsigned word data.

• If a serial port does not actually exist, the data is not output externally.

• If a value exceeding the output range is assigned, the low-order 2-byte information is output.

9.13 Serial double word output
 Output the status of serial output word information in a double word, or indicates the output status.

Format

SOD(m)

 Values m : port number 2, 4, 6, 8, 10, 12, 14

 The output range is -2,147,483,648(&H80000000) to 2,147,483,647(&H7FFFFFFF).

Examples: A%=SOD(2)

 →The output status of SOD (2) is assigned to variable A%.

 SOD(14)=A%

 →The contents of variable A% are assigned in SOD (14).

• The information is handled as signed double word data.

• If a serial port does not actually exist, the data is not output externally.

• The lower port number data is placed at the lower address.

 For example, if SOW(2) =&H2345, SOW(3) =&H0001, then SOD(2) =&H00012345.

MEMO

MEMO

1

2

3

4

5

6

Bit Settings 3-17

 10 Bit Settings

Bits can be specified for input/output variables by any of the following methods.

1. Single bit

To specify only 1 of the bits, the target port number and bit number are specified in parentheses.

The port number may also be specified outside the parentheses.

Programming example: DOm(b)DOm(b)
Example: DO(25) Specifies bit 5 of port 2.

 DO2(5)

2. Same-port multiple bits

To specify multiple bits at the same port, those bit numbers are specified in parentheses (separated

by commas) following the port number.

The port number may also be specified in parentheses.

Programming example: DOm(b,b,…,b) DO(mb,mb,…,mb)
Example: DO2(7,5,3) Specifies DO(27), DO(25), DO(23)

 DO(27,25,23)

3. Different-port multiple bits

To specify multiple bits at different ports, 2-digit consisting of the port number and the bit number

must be specified in parentheses and must be separated by commas. Up to 8 bits can be written.

Programming example: DO(mb,mb,…,mb)
Example: DO(37,25,20) Specifies DO(37), DO(25), DO(20).

4. All bits of 1 port

To specify all bits of a single port, use parentheses after the port number. Methods 2 and 3 shown

above can also be used.

Programming example: DOm()
Example: DO2() Specifies all the DO(27) to DO(20) bits

 →The same result can be obtained by the following:

 DO(27,26,25,24,23,22,21,20)

 or,

 DO2(7,6,5,4,3,2,1,0)

1

2

3

4

5

6

3-18 Chapter 3 Variables

 11 Valid range of variables

11.1 Valid range of dynamic (array) variables

Dynamic (array) variables are divided into global variables and local variables, according to their

declaration position in the program. Global and local variables have different valid ranges.

Variable Type Explanation
Global variables Variables are declared outside of sub-procedures (outside of

program areas enclosed by a SUB statement and END SUB
statement). These variables are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in
these sub-procedures.

• For details regarding arrays, refer to Chapter 3 "5 Array variables".

• A variable declared at the program level can be referenced from a sub-procedure without

being passed along as a dummy argument, by using the SHARED statement (for details, refer to

Chapter 8 "111 SHARED").

11.2 Valid range of static variables

Static variable data is not cleared when a program reset occurs. Moreover, variable data can be

changed and referenced from any program.

The variable names are determined as shown below (they cannot be named as desired).

Variable type Variable name
Integer variable SGIn (n: 0 to 31)
Real variable SGRn (n: 0 to 31)

MEMO

1

2

3

4

5

6

Clearing variables 3-19

 12 Clearing variables

12.1 Clearing dynamic variables

In the cases below, numeric variables are cleared to zero, and character variables are cleared to a

null string. The array is cleared in the same manner.

 ■ When a program reset occurs.
 ■ When dedicated input signal DI15 (program reset input) was turned on while the program was

stopped in AUTO mode.
 ■ When either of the following is initialized by an initialization operation.

 1. Program memory

 2. Entire memory
 ■ When any of the following online commands was executed.

 @RESET, @INIT PGM, @INIT MEM, @INIT ALL
 ■ When the HALTALL statement was executed in the program (HALT statement does not clear

dynamic variables).

12.2 Clearing static variables

In the cases below, integer variables and real variables are cleared to zero.

 ■ When the following is initialized by an initialization operation.

 Entire memory
 ■ When any of the following online commands was executed.

 @INIT MEM, @INIT ALL

Chapter 4

Expressions and Operations

1 1 Arithmetic operations4-1
2 2 Character string operations4-4
3 3 Point data format4-5
4 4 DI/DO conditional expressions4-6

1

2

3

4

5

6

Arithmetic operations 4-1

 1 Arithmetic operations

1.1 Arithmetic operators

Operators Usage Example Meaning
+ A+B Adds A to B
- A-B Subtracts B from A
* A*B Multiplies A by B
/ A/B Divides A by B
^ A^B Obtains the B exponent of A (exponent operation)
- -A Reverses the sign of A
MOD A MOD B Obtains the remainder A divided by B

When a "remainder" (MOD) operation involves real numbers, the decimal value is rounded off to

the nearest whole number which is then converted to an integer before the calculation is executed.

The result represents the remainder of an integer division operation.

Examples: A=15 MOD 2 → A=1(15/2=7....1)

 A=17.34 MOD 5.98 → A=2(17/5=3....2)

1.2 Relational operators

Relational operators are used to compare 2 values. If the result is "true", a "-1" is obtained. If it is

"false", a "0" is obtained.

Operators Usage Example Meaning
= A=B "-1" if A and B are equal, "0" if not.
<>, >< A<>B "-1" if A and B are unequal, "0" if not.
< A<B "-1" if A is smaller than B, "0" if not.
> A>B "-1" if A is larger than B, "0" if not.
<=, =< A<=B "-1" if A is equal to or smaller than B, "0" if not.
>=, => A>=B "-1" if A is equal to or larger than B, "0" if not.

Examples: A=10>5 → Since 10 > 5 is "true", A = -1.

• When using equivalence relational operators with real variables and real arrays, the desired

result may not be obtained due to the round-off error.
Examples:A=2

B=SQR(A!)

IF A!=B!*B! THEN...

→ In this case, A! will be unequal to B!*B!.

MEMO

1

2

3

4

5

6

4-2 Chapter 4 Expressions and Operations

1.3 Logic operations

Logic operators are used to manipulate 1 or 2 values bit by bit. For example, the status of an I/O

port can be manipulated.

 ■ Depending on the logic operation performed, the results generated are either 0 or 1.
 ■ Logic operations with real numbers convert the values into integers before they are executed.

Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.
AND, & Logical AND Becomes "1" when both bits are "1".
OR, | Logical OR Becomes "1" when either of the bits is "1".
XOR Exclusive OR Becomes "1" when both bits are different.

EQV Logical equivalence
operator Becomes "1" when both bits are equal.

IMP Logical implication
operator

Becomes "0" when the first bit is "1" and the second bit
is "0".

Examples: A%=NOT 13.05 → "-14" is assigned to A% (reversed after being rounded off to 13).

Bit 7 6 5 4 3 2 1 0
13 0 0 0 0 1 1 0 1

NOT 13=-14 1 1 1 1 0 0 1 0

Examples: A%=3 AND 10 → "2" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
3 AND 10 = 2 0 0 0 0 0 0 1 0

Examples: A%=3 OR 10 → "11" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
3 OR 10 = 11 0 0 0 0 1 0 1 1

Examples: A%=3 XOR 10 → "9" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
3 XOR 10 = 9 0 0 0 0 1 0 0 1

1

2

3

4

5

6

Arithmetic operations 4-3

1.4 Priority of arithmetic operation

Operations are performed in the following order of priority. When two operations of equal priority

appear in the same statement, the operations are executed in order from left to right.

Priority Rank Arithmetic Operation
1 Expressions included in parentheses
2 Functions, variables
3 ^ (exponents)
4 Independent "+" and "-" signs (Monominal operators)
5 * (Multiplication), / (Division)
6 MOD
7 + (Addition), - (Subtraction)
8 Relational operators
9 NOT, ~ (Logical NOT)
10 AND, & (Logical AND)
11 OR, |, XOR (Logical OR, exclusive OR)
12 EQV (Logical equivalence)
13 IMP (Logical implication)

1.5 Data format conversion

Data format is converted in cases where two values of different formats are involved in the same

operation.

1. When a real number is assigned to an integer, decimal places are rounded off.

Examples: A%=125.67 → A%=126

2. When integers and real numbers are involved in the same operation, the result
 becomes a real number.

Examples: A(0)=125 * 0.25 → A(0)=31.25

3. When an integer is divided by an integer, the result is an integer with the remainder
 discarded.

Examples: A(0)=100/3 → A(0)=33

1

2

3

4

5

6

4-4 Chapter 4 Expressions and Operations

 2 Character string operations

2.1 Character string connection

Character strings may be combined by using the "+" sign.

SAMPLE

A$="OMRON"

B$="ROBOT"

C$="LANGUAGE"

D$="MOUNTER"

E$=A$+" "+B$+" "+C$

F$=A$+" "+D$

PRINT E$

PRINT F$

Results: OMRON ROBOT LANGUAGE

 OMRON MOUNTER

2.2 Character string comparison

Characters can be compared with the same relational operators as used for numeric values.

Character string comparison can be used to find out the contents of character strings, or to sort

character strings into alphabetical order.

 ■ In the case of character strings, the comparison is performed from the beginning of each string,

character by character.
 ■ If all characters match in both strings, they are considered to be equal.
 ■ Even if only one character in the string differs from its corresponding character in the other string,

then the string with the larger (higher) character code is treated as the larger string.
 ■ When the character string lengths differ, the longer of the character strings is judged to be the

greater value string.

All examples below are "true".

Examples: "AA"<"AB"

 "X&">"X#"

 "DESK"<"DESKS"

1

2

3

4

5

6

Point data format 4-5

 3 Point data format

There are two types of point data formats: joint coordinate format and Cartesian coordinate format.

Point numbers are in the range of 0 to 29999.

Coordinate Format Data Format Explanation
Joint coordinate
format

± nnnnnnn This is a decimal integer constant of 8 digits
or less with a plus or minus sign, and can be
specified from –99999999 to 99999999.
Unit: [pulses]

Cartesian
coordinate
format

± nnn.nn to ± nnnnnnn This is a decimal fraction of a total of 7 digits
including 3 or less decimal places.
Unit: [mm] or [degrees]

When setting an extended hand system flag for SCARA robots, set either "1" or "2" at the end of the

data. If a value other than "1" or "2" is set, or if no value is designated, "0" will be set to indicate that

no hand system flag is set.

Hand System Data Value
RIGHTY (right-handed system) 1

LEFTY (left-handed system) 2

NOTE
 • T h e d a t a f o r m a t i s
c o m m o n f o r a x e s 1
to 6 for both the joint
coordinate format and
the Cartesian coordinate
format.

 • P lus (+) s igns can be
omitted.

1

2

3

4

5

6

4-6 Chapter 4 Expressions and Operations

 4 DI/DO conditional expressions

DI/DO conditional expressions may be used to set conditions for WAIT statements and STOPON

options in MOVE statements.

Numeric constants, variables and arithmetic operators that may be used with DI/DO conditional

expressions are shown below.

 • Constant

 Decimal integer constant, binary integer constant, hexadecimal integer constant

 • Variables

 Global integer type, global real type, input/output type

 • Operators

 Relational operators, logic operators

 • Operation priority

 1. Relational operators

 2. NOT, ~

 3. AND, &

 4. OR, |, XOR

Examples: WAIT DI(31)=1 OR DI(34)=1

 → The program waits until either DI31 or

 DI34 turns ON.

Chapter 5

Multiple Robot Control

1 1 Overview ...5-1
2 2 Command list with a robot setting5-2

1

2

3

4

5

6

Overview 5-1

 1 Overview

YRCX can be used to control multiple robots (up to 4).

The multi-task function also enables multiple robots to move asynchronously.

To use this function, settings for multiple robots or settings for auxiliary axes must be made in the

system prior to shipment.

The following settings are possible to the axes of robots.

 ■ Robot 1 (4 axes)
 ■ Robot 1 (4 axes) + robot 2 (4 axes) (when using the YC-LINK/E option)
 ■ Robot 1 (4 axes) + robot 2 (4 axes) + robot 3 (4 axes) + robot 4 (4 axes)

 (when using the YC-LINK/E option)

Each robot consists of normal axes and auxiliary axes.

When using one robot without auxiliary axes, the setting is made only to normal axes.

Main group Robot 1 normal axis

(Number of axes: 4)

1. For robot 1

2. For 1 robot with no auxiliary axes used

Robot 1 auxiliary axis

(Number of axes: 4)

Robot 1 Robot 1 robot

(Number of axes: 4)

Robot 1 auxiliary axis

(None)

Axes configuration

33501-R9-00

1

2

3

4

5

6

5-2 Chapter 5 Multiple Robot Control

 2 Command list with a robot setting

The special commands and functions for robot movements and coordinate control are common

for all robots. A robot can be specified with an option of a command. Main commands are shown

below.

Operator Command name
Robot movement DRIVE

MOVE
MOVET
PMOVE
WAIT ARM

DRIVEI
MOVEI
PATH
SERVO

Coordinate control CHANGE
LEFTY
RIGHTY

HAND
PATH
SHIFT

Status change ACCEL
ARCHP2
ARMTYP
AXWGHT
MSPEED
OUTPOS
TOLE

ARCHP1
ARMSEL
ASPEED
DECEL
ORGORD
SPEED
WEIGHT

Point operation JTOXY
XYTOJ

WHERE
WHRXY

Parameter reference ACCEL
ARCHP2
AXWGHT
ORGORD
TOLE

ARCHP1
ARMTYP
DECEL
OUTPOS
WEIGHT

Status reference ABSRPOS
ARMSEL
CURTQST
MCHREF
WHRXY

ARMCND
ARMTYP
CURTRQ
WHERE

Torque control TORQUE
TRQTIME

TRQSTS
CURTRQ

 ■ An axis specified as an auxiliary axis cannot be moved with the MOVE, MOVEI, MOVET and

PMOVE commands. Use the DRIVE or DRIVEI command to move it.

Chapter 6

Multi-tasking

1 1 Outline ...6-1
2 2 Task definition method6-1
3 3 Task status and transition6-2
4 4 Multi-task program example6-8
5 5 Sharing the data6-8
6 6 Cautionary Items6-9

1

2

3

4

5

6

Outline 6-1

 1 Outline

The multi-task function performs multiple processing simultaneously in a parallel manner, and can

be used to create programs of higher complexity. Before using the multi-task function, read this

section thoroughly and make sure that you fully understand its contents.

Multi-tasking allows executing two or more tasks in parallel. However, this does not mean that

multiple tasks are executed simultaneously because the controller has only one CPU to execute the

tasks. In multi-tasking, the CPU time is shared among multiple tasks by assigning a priority to each

task so that they can be executed efficiently.

 ■ A maximum of 16 tasks (task 1 to task 16) can be executed in one program.
 ■ Tasks can be prioritized and executed in their priority order (higher priority tasks are executed first).
 ■ The priority level can be set to any level between 1 and 64.
 ■ Smaller values have higher priority, and larger values have lower priority

(High priority: 1 ⇔ 64: low priority).

 2 Task definition method

A task is a set of instructions which are executed as a single sequence. As explained below, a task is
defined by assigning a label to it.

1. Create one program that describes a command which is to be defined as a task.

2. In the START statement of the program that will be a main task, specify the program created at

 Step 1 above. Task numbers are then assigned, and the program starts.

SAMPLE

’MAIN TASK(TASK1)

START <SUB_PGM>,T2 ················· <SUB_PGM> is started as Task 2

*ST1:

MOVE P,P1,P0

 IF DO(20)= 1 THEN

 HALTALL

 ENDIF

GOTO *ST

HALTALL

Program name:SUB_PGM

’SUB TASK(TASK2)

*IOTASK: ························ Task 2 begins here

 IF DI(21)=1 THEN

 DO(30)=1

 ELSE

 DO(30)=0

 ENDIF

GOTO *IOTASK ······················· Task 2 processing ends here

EXIT TASK

1

2

3

4

5

6

6-2 Chapter 6 Multi-tasking

 3 Task status and transition

There are 6 types of task status.

1. STOP status
 A task is present but the task processing is stopped.

2. RUN status
 A task is present and the task processing is being executed by the CPU.

3. READY status
 A task is present and ready to be allocated to the CPU for task processing.

4. WAIT status
 A task is present and waiting for an event to begin the task processing.

5. SUSPEND status
 A task is present but suspended while waiting to begin the task processing.

6. NON EXISTENT status
 No tasks exist in the program. (The START command is used to perform a call.)

Task state transition

Delete Call

NON EXISTENT

Restart

Start

Suspend

Wait conditionCancel waiting

StopStop Stop Stop

CPU assignment

Wait for CPU assignment

STOP

RUNSUSPEND READY WAIT

33601-R9-00

3.1 Starting tasks

When the START command is executed, a specified program is registered in the task and placed in

RUN status. If the task number (1 to 16) is not specified by the START command, the task with the

smallest number among the tasks yet to be started is automatically specified. For details regarding

the START command, refer to "123 START" in Chapter 8.

• When the LOAD command is executed, a specified program is registered in the task and placed

in a STOP status. For details of the LOAD command, refer to "1. Register task" of "2.1 Program

operations" in Chapter 12.

• If another program is already registered in the task number specified by the START command or

the LOAD command, the "6.215: Task running" error will occur.

• When programs are registered in all task numbers and the START command or the LOAD command

is executed without specifying the task number, the "6.263: Too many Tasks" error will occur.

• When the HALTALL command is executed, all tasks termitate and the task enters the NON

EXISTENT (no task registration) status. When the main program is specified, the HALTALL

command registers the main program in the task 1 and stops at the beginning line. When the

main program is not specified, the HALTALL command registers the program that has been

executed last (current program) in the task 1 and stops at the beginning line.

 For details regarding the main program, refer to "Setting the main program" of YRCX operator's

manual.

MEMO

1

2

3

4

5

6

Task status and transition 6-3

3.2 Task scheduling

Task scheduling determines the priority to be used in allocating tasks in the READY (execution

enabled) status to the CPU and executing them.

When there are two or more tasks which are put in the READY status, ready queues for CPU

allocation are used to determine the priority for executing the tasks. One of these READY status

tasks is then selected and executed (RUN status).

Only tasks with the same priority ranking are assigned to a given ready queue. Therefore, where

several tasks with differing priority rankings exist, a corresponding number of ready queues are

created. Tasks within a given ready queue are handled on a first come first serve (FCFS) basis. The

task where a READY status is first established has priority. The smaller the number, the higher the

task priority level.

Task 1 Task 3

Task 1

Task 4

Task 5

Task 2

Ready queue 1

Ready queue 2

Ready queue 3

Order in which tasks are put in READY status.

The head of the task with the highest priority
is put in RUN status.High

Low

32

33

34

Priority level

Task scheduling

33602-R7-00

A RUN status task will be moved to the end of the ready queue if placed in a READY status by any

of the following causes:

1) A WAIT status command was executed.

2) The CPU occupation time exceeds a specified time.

3) A task with a higher priority level is put in READY status.

Task 1

RUN status READY status

Moves to the end of the ready queue, and Task 3 is executed.

Task 3 Task 4

Execution sequence

1

Task 1 Task 3 Task 4 Task 1

2

Moves to the end of the ready queue, and Task 4 is executed.

Task 3 Task 4 Task 1 Task 3

3

Ready queue

33603-R7-00

NOTE
 • When the prescribed CPU
occupation time elapses,
the active command is
ended, and processing
moves to the next task.
However, if there are no
other tasks of the same
or higher priority (same
or higher ready queue),
the same task wi l l be
executed again.

1

2

3

4

5

6

6-4 Chapter 6 Multi-tasking

3.3 Condition wait in task

A task is put in the WAIT status (waiting for an event) when a command causing WAIT status is

executed for that task. At this time, the transition to READY status does not take place until the wait

condition is canceled.

1. When a command causing WAIT status is executed, the following transition happens.
 ■ Task for which a command causing WAIT status is executed → WAIT status
 ■ Task at the head of the ready queue with higher priority → RUN status

• For example, when a MOVE statement (a command that establishes WAIT status)

is executed, the CPU sends a "MOVE" instruction to the driver, and then waits for

a "MOVE COMPLETED" reply from the driver. This is "waiting for an event" status.

In this case, WAIT status is established at the task which executed the MOVE command, and that

task is moved to the end of the ready queue. RUN status is then established at the next task.

2. When an event waited by the task in the WAIT status occurs, the following status
 transition takes place by task scheduling.

 ■ Task in the WAIT status for which the awaited event occurred → READY status

 However, if the task put in the READY status was at the head of the ready queue with the

 highest priority, the following transition takes place.

 1) Task that is currently in RUN status → READY status

 2) Task at the head of the ready queue with higher priority → RUN status

• In the above MOVE statement example, the task is moved to the end of the ready queue. Then,

when a "MOVE COMPLETED" reply is received, this task is placed in READY status.

Tasks are put in WAIT status by the following commands.

Event Command
Wait for axis
movement to
complete

Axis movement
command

MOVE
DRIVEI
SERVO

MOVEI
PMOVE
WAIT ARM

MOVET
PATH

DRIVE
MOTOR

Parameter
command

ACCEL
DECEL
WEIGHT

ARCHP1
OUTPOS

ARCHP2
TOLE

AXWGHT
ORGORD

Robot status
change command

CHANGE
MSPEED

SHIFT
SPEED

LEFTY ASPEED

Wait for time to elapse DELAY, SET (Time should be specified.), WAIT ARM
(Time should be specified.)

Wait for condition to be met WAIT
Wait for data to send or to be received SEND
Wait for print buffer to become empty PRINT
Wait for key input INPUT

• The tasks are not put in WAIT status if the event has been established before the above

commands are executed.

MEMO

NOTE
 • I f mult iple tasks are in
WAIT status awaiting the
same condition event, or
different condition events
occur simultaneously, all
tasks for which the waited
events occur are put in
READY status.

MEMO

MEMO

1

2

3

4

5

6

Task status and transition 6-5

3.4 Suspending tasks (SUSPEND)

The SUSPEND command temporarily stops tasks other than task 1 and places them in SUSPEND

status.

When the SUSPEND command is executed, the status transition takes place as follows.

 ■ Task that executed the SUSPEND command → RUN status
 ■ Specified task → SUSPEND status

Suspending tasks (SUSPEND)

Task 1 Task 2 Task 1

Task 2
RUN READY RUN

SUSPEND

SUSPEND

Task 3

READY

Task 3

READY

The task is placed in a SUSPEND status,
and is removed from the ready queue.

33604-R7-00

3.5 Restarting tasks (RESTART)

Tasks in the SUSPEND status can be restarted with the RESTART command.

When the RESTART command is executed, the status transition takes place as follows.

 ■ Task for which the RESTART command was executed → RUN status
 ■ Specified task → READY status

Restarting tasks (RESTART)

Task 1

Task 2

Task 1 Task 3

RUN

SUSPEND

RUN READY

RESTART

Task 2

READY

Task 3

READY

The task is placed in a READY status,
and is assigned to a ready queue.

33605-R7-00

1

2

3

4

5

6

6-6 Chapter 6 Multi-tasking

3.6 Deleting tasks

Task self-delete (EXIT TASK)

Tasks can delete themselves and set to the NON EXISTENT (no task registration) status by using the

EXIT TASK command.

When the EXIT TASK command is executed, the status transition takes place as follows.

 ■ Task that executed the EXIT TASK command → NON EXISTENT status
 ■ Task at the head of the ready queue with higher priority → RUN status

Task self-delete (EXIT TASK)

Task 2 Task 3

Task 2

Task 3

RUN READY

NON EXISTENT

RUN

EXIT TASK

Task 4

READY

Task 4

READY

The task is placed in a NON EXISTENT status,
and is removed from a ready queue.

33606-R7-00

Other-task delete (CUT)

Tasks can also delete the other tasks and put in the NON EXISTENT (no task registration) status by

using the CUT command.

When the CUT command is executed, the status transition takes place as follows.

 ■ Task that executed the CUT command → RUN
 ■ Specified task → NON EXISTENT

Other-task delete (CUT)

Task 2 Task 3 Task 2

Task 3
RUN READY

Task 4

READY

Task 4

READY RUN

NON EXISTENT

CUT

The task is placed in a NON EXISTENT status,
and is removed from the ready queue.

33607-R7-00

• If a SUSPEND command is executed for a WAIT-status task, the commands being executed by

that task are ended.
MEMO

1

2

3

4

5

6

Task status and transition 6-7

3.7 Stopping tasks

All tasks stop if any of the following cases occurs.

1. HALTALL command is executed. (stop & reset)
 All programs are reset and task is put in the NON EXISTENT status. When the main

 program is specified, the HALTALL command registers the main program in the task 1 and all

 tasks are put in the STOP status at the beginning line. When the main program is not specified,

 the HALTALL command registers the program that has been executed last (current program) in

 the task 1 and all tasks are put in the STOP status at the beginning line.

2. HOLDALL command is executed. (temporary stop)
 All tasks are put in the STOP status. When the program is restarted, the tasks in the STOP status

 set to the READY or SUSPEND status.

3. STOP key on the programming box is pressed or the interlock signal is cut off.
 Just as in the case where the HOLD command is executed, all tasks are put in the STOP status.

 When the program is restarted, the tasks in the STOP status set to the READY status (or, the task

 is placed the SUSPEND status after being placed in the READY status).

4. When the emergency stop button on the programming box is pressed
 or the emergency stop signal is cut off.
 All tasks are put in the STOP status. At this point, the power to the robot is shut off and the

 servo sets to the non-hold state.

 After the canceling emergency stop, when the program is restarted, the tasks in the STOP status

 are set to the READY or SUSPEND status. However, a servo ON is required in order to restart

 the robot power supply.

• When the program is restarted without being reset after the tasks have been stopped by a cause

other than 1., then each task is processed from the status in which the task stopped. This holds

true when the power to the controller is turned off and then turned on.

MEMO

1

2

3

4

5

6

6-8 Chapter 6 Multi-tasking

 4 Multi-task program example

Tasks are executed in their scheduled order. An example of a multi-task program is shown below.

SAMPLE

’TASK1

START <SUB_TSK2>,T2

START <SUB_TSK3>,T3

*ST1:

 DO(20) = 1

 WAIT MO(20) = 1

 MOVE P,P1,P2,Z=0

 IF MO(21)=1 THEN *FIN

GOTO *ST1

*FIN:

CUT T2

HALTALL

Program name:SUB_TSK2

’TASK2 ····················· Task 2 begins here.

*ST2:

 IF DI(20) = 1

 MO(20) = 1

 DELAY 100

 ELSE

 MO(20) = 0

 ENDIF

GOTO *ST2

EXIT TASK Ends here.

Program name:SUB_TSK3

’TASK3 ····················· Task 3 begins here.

*ST3:

 IF DI(21) = 0 THEN *ST3

 IF DI(30) = 0 THEN *ST3

 IF DI(33) = 0 THEN *ST3

 MO(21) = 1

EXIT TASK ····················· Ends here.

 5 Sharing the data

All global variables, static variables, input/output variables, point data, shift coordinate definition

data, hand definition data, and pallet definition data are shared between all tasks.

Execution of each task can be controlled while using the same variables and data shared with the

other tasks.

• In this case, however, use sufficient caution when rewriting the variable and data because

improper changes may cause trouble in the task processing. Take great care when sharing the

same variables and data.

MEMO

1

2

3

4

5

6

Cautionary Items 6-9

 6 Cautionary Items

A freeze may occur if subtasks are continuously started (START command) and ended (EXIT TASK

command) by a main task in an alternating manner.

This occurs for the following reason: if the main task and subtask priority levels are the same, a task

transition to the main task occurs during subtask END processing, and an illegal task status then

occurs when the main task attempts to start a subtask.

Therefore, in order to properly execute the program, the subtask priority level must be set higher

than that of the main task. This prevents a task transition condition from occurring during execution

of the EXIT TASK command.

In the sample program shown below, the priority level of task 1 (main task) is set as 32, and the

priority level of task 2 is set as 31 (the lower the value, the higher the priority).

SAMPLE

FLAG1 = 0

*MAIN_TASK:

 IF FLAG1=0 THEN

 FLAG1 = 1

 START <SUB_PGM>,T2,31 ········· <SUB_PGM> is started as task 2

 at the priority level of 31.

 ENDIF

GOTO *MAIN_TASK

HALTALL

Program name:SUB_PGM

'==============

' TASK2

'==============

*TASK2:

 DRIVE(1,P1)

 WAIT ARM(1)

 DRIVE(1,P2)

 WAIT ARM(1)

 FLAG1 = 0

EXIT TASK

Chapter 7

Sequence function

1 1 Sequence function7-1
2 2 Creating a sequence program7-1
3 3 Executing a sequence program7-4
4 4 Programming a sequence program7-5

7

8

9

10

11

12

13

Sequence function 7-1

 1 Sequence function

Besides normal robot programs, the YRCX controller can execute high-speed processing programs

(sequence programs) in response to the robot input/output (DI, DO, MO, LO, TO, SI, SO) signals.

 • This function allows to monitor the input/output signals of sensors, push button switches, solenoid

valves, etc. and move them. The sequence program starts running simultaneously the controller is

turned on.

 • The sequence program can be written in the same robot language used for robot programs. (The

ladder logic are not necessary).

 • Naming the program "SEQUENCE" makes the controller recognize as sequence program.

 • For details regarding conditions to execute a sequence program, refer to "3 Executing a sequence

program" in this Chapter.

 • General-purpose outputs are not reset by the program reset while the sequence function is running.

In the manner shown below, the reset of general-purpose output can be set while the sequence

program compile.

• Set a sequence flag value of the controller parameter at "3".

• Select "Output Reset Enable" on the sequence execution flag dialogue in the support software

"SCARA-YRCX Studio".

 2 Creating a sequence program

2.1 Programming method

Step 1 Select [Program Edit] from [Edit]
menus on the "MENU" screen of
the programming box.

34701-R9-00

Step 2 Press the F1 key (NEW) on the
"PROGRAM SELECTION" screen.

34702-R9-00

NOTE
 • While the "DI10: sequence
control input" is ON, a
sequence program runs
accord ing to i t s own
cycle, regardless of robot
program starts and stops.

 • T h e " D O 1 2 : S e q u e n c e
program running" dedicated
signal output occurs while
a sequence program is
being executed.

MEMO

Program editStep 1

Program selectionStep 2

7-2 Chapter 7 Sequence function

7

8

9

10

11

12

13

Step 3 E n t e r " S E Q U E N C E " o n t h e
program name entry screen, and
press the [OK] button.

34703-R9-00

Step 4 Use the cur so r keys (s / t) to
s e l e c t " S E Q U E N C E " o n t h e
"PROGRAM SELECTION" screen,
and then press the F2 key (EDIT).

34704-R9-00

Step 5 " 3 . 220 : P rog ram s tep doesn ' t
ex i s t " message appear s when
creat ing a new program, and
press [Close].

34705-R9-00

Step 6 Input a program on "PROGRAM
SELECTION" screen.

Although usable commands are
resricted, editing method is same
as the standard robot program.

Commands which can be input
are explained at "4 Programming
a s e q u e n c e p ro g ra m " i n t h i s
Chapter.

34706-R9-00

Creating new programStep 3

Program selectionStep 4

NOTE
 • When creating a new
p r o g r a m , t h e a l a r m
occurs since no program
is written. This alarm does
not occur when the robot
language exists already in
a program.

“Program step doesn’t exist” messageStep 5

Program editStep 6

7

8

9

10

11

12

13

Creating a sequence program 7-3

2.2 Compiling

Compile and create an executable sequence program.

Step 1 Press the F3 key (SEQ CMP) on
t h e " P R O G R A M S E L E C T I O N "
screen.

34707-R9-00

Step 2 The confi rmation message wi l l
a ppear whether you execute
sequence compile.

P r e s s [O K] t o c o m p i l e t h e
program.

34708-R9-00

• If there is a syntax error in the program, an

error message appears. When the compiling

ends without any error, the display returns to

the "PROGRAM SELECTION" screen and the

letter "s" appears in "Flag". This means that

the sequence program has been compiled

successfully and is ready for use.

34709-R9-00

• The sequence execution program is erased and the Flag's letter "s" disappears in the following

cases. In these cases the sequence function cannot be used.

 1. When the sequence program was erased.

 2. When the sequence program was edited.

 3. When the program data was initialized.

 4. When the "9.729: Sequence object destroyed." alarm occured.

Program selectionStep 1

Sequence compilingStep 2

MEMO Success of compilingMEMO

MEMO

7-4 Chapter 7 Sequence function

7

8

9

10

11

12

13

 3 Executing a sequence program

All the following conditions must be satisfied to execute a sequence program.

1. The sequence program has been compiled.

2. The sequence program execution flag is enabled.

 (For details regarding the sequence program execution flag, refer to the YRCX operator’s

 manual.)

3. The external sequence control input (DI10) contact is ON.

Sequence program execution in progress

Indicated during execution

34710-R9-00

3.1 Sequence program STEP execution

The sequence program may be executed line by line while checking one command line at a time.

This step execution can be executed in the same way as normal programs.

For details, refer to the YRCX operator’s manual.

When the step is executed, satisfying the conditions described in the previous section is not

required.

7

8

9

10

11

12

13

Programming a sequence program 7-5

 4 Programming a sequence program

When programming a sequence program, you may use only assignment statements comprised of

input/output variables and logical operators.

4.1 Assignment statements

Format

output variable = expression

 Values expression Any one of the following can be used.

 • Parallel input/output variables

 • Internal output variables

 • Arm lock output variables

 • Timer output variables

 • Serial input/output variable

 • The logic operation expression shown above

4.2 Input/output variables

Each variable must be specified in a 1-bit format

·Correct examples DO(35)

 MO(24)

 DI(16)

·Incorrect examples DO(37, 24)

 DI3(4)

 MO3()

 4.2.1 Input variables

 ● Parallel input variables

Format

DI(mb) m: Port number ·············· 0 to 7, 10 to 17, 20 to 27

 b: bit definition ············ 0 to 7

 These variables show the status of the parallel input signal.

 ● Serial input variables

Format

SI(mb) m: Port number ·············· 0 to 7, 10 to 17, 20 to 27

 b: bit definition ············ 0 to 7

 Indicates a serial input signal status. Only referencing can occur. No controls are possible.

7-6 Chapter 7 Sequence function

7

8

9

10

11

12

13

 4.2.2 Output variables

 ● Parallel output variables

Format

DO(mb) m: Port number ·············· 0 to 7, 10 to 17, 20 to 27

 b: bit definition ············ 0 to 7

 A parallel output is specified, or the output status is referenced. Ports 0 and 1 are for referencing

 only, and no outputs can occur there.

 ● Internal output variables

Format

MO(mb) m: Port number ·············· 0 to 7, 10 to 17, 20 to 27, 30 to 37

 b: bit definition ············ 0 to 7

 These variables are used within the controller. Ports 30 to 37 are for referencing only

 and ON/OFF can not be controlled.

 ● Arm lock output variables

Format

LO(mb) m: port number ·············· 0, 1

 b: bit definition ················ 0 to 7

 These variables are used to prohibit the arm (axis) movement. Movement is prohibited when ON.

 LO(00) to LO(07) corresponds to arm 1 to arm 8, LO(10) to LO(17) corresponds to arm 9 to

 arm 16, respectively.

 ● Timer output variables

Format

TO(mb) m: port number ·············· 0, 1

 b: bit definition ············ 0 to 7

 There are a total of 16 timer output variables: TO(00) to TO(17). The timer of each variable is

 defined by the timer definition statement TIM00 to 17.

 ● Serial output variables

Format

SO(mb) m: Port number ·············· 0 to 7, 10 to 17, 20 to 27

 b: bit definition ············ 0 to 7

 Control or reference ser ial output s ignal s tatus. Port 0 is for referencing only,

 and no controls are possible.

7

8

9

10

11

12

13

Programming a sequence program 7-7

Timer usage example

SAMPLE

TIM02 = 2500 ···················· Timer 02 is set to 2.5 seconds.

TO(02) = DI(23) ················· Timer starts when DI(23) switches ON.

• When DI(23) is ON, after 2.5 seconds, TO(02) is set ON.

• When DI(23) is OFF, TO(02) is also OFF.

• When DI(23) isn’t ON after 2.5 second or more, TO(02) does not change to ON.

Timer usage example: Timing chart

DI(23)

2.5sec

TO(02)

1.6sec

33701-R7-00

4.3 Timer definition statement

Format

TIMmb=time m: Port number ······· 0, 1

 b: bit definition ····· 0 to 7

 Values time 100 to 999,900ms (0.1 to 999.9 second)

 Meaning The timer definition statement sets the timer value of the timer output variable. This

definition statement may be anywhere in the program.

 When the timer definition statement is omitted, the timer setting value of the variable is 0.

 TIM00 to 17 correspond to the timer output variables TO(00) to (17).

 However, since the units are set every 100ms, values less than 99ms are truncated.

4.4 Logical operators

Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.
AND, & Logical AND Becomes "1" when both bits are "1".
OR, | Logical OR Becomes "1" when either of the bits is "1".
XOR Exclusive OR Becomes "1" when both bits are different.
EQV Logical equivalence

operator
Becomes "1" when both bits are equal.

IMP Logical implication
operator

Becomes "0" when the first bit is "1" and the second
bit is "0".

7-8 Chapter 7 Sequence function

7

8

9

10

11

12

13

4.5 Priority of logic operations

Priority Ranking Operation Content
1 Expressions in parentheses
2 NOT, ~ (Logical NOT)
3 AND, & (Logical AND)
4 OR, | (Logical OR)
5 XOR (Exclusive OR)
6 EQV (Logical equivalence operator)
7 IMP (Logical implication operator)

 ● Example with a ladder statement substitution

SAMPLE

DO(23)=DI(16)&DO(35)

MO(34)=DO(25) | ~DI(24)

DO(31)=(DI(20) | DO(31))&~DI(21)

Ladder diagram

DI(16)

DO(25)

~DI(24)

DI(20)

DO(31)

DO(35)

~DI(21)

DO(23)

MO(34)

DO(31)

(Self-hold circuit)

33702-R7-00

• "NOT" cannot be used prior to the first parenthesis " (" or on the left of an expression. For

example, the following commands cannot be used.

 •DO(21)=~(DI(30) | DI(32))

 •~DO(30)=DI(22)&DI(27)

• Numeric values cannot be assigned on the right of an expression.

 •MO(35)=1

 •DO(26)=0

• There is no need to define a "HALT" or "HOLD" statement at the end of the program.

• The variables used in sequence programs are shared with robot programs, so be careful not to

make improper changes when using the same variables between them.

4.6 Sequence program specifications

Item Specification
Commands Logical NOT, AND, OR, XOR, EQV, IMP
I/O Same as robot language
Program capacity 16,384 bytes (A maximum of 2,048 variables can be specified.)
Scan time 1 to 4ms depending on the number of steps (This changes

automatically.)

MEMO

Chapter 8

Robot Language Lists

 How to read the robot language table8-1
 Command list in alphabetic order8-2
 Operation-specific ...8-7
 Functions: in alphabetic order8-13
 Functions: operation-specific8-16

1 1 ABS ..8-18
2 2 ABSRPOS ...8-19
3 3 ACCEL ...8-20
4 4 ARCHP1 / ARCHP28-21
5 5 ARMCND ...8-23
6 6 ARMSEL ..8-24
7 7 ARMTYP ...8-25
8 8 ASPEED ..8-26
9 9 ATN / ATN2 ..8-27
10 10 AXWGHT ..8-28
11 11 CALL ...8-29
12 12 CHANGE ..8-30
13 13 CHGPRI ..8-31
14 14 CHR$..8-32
15 15 CLOSE ..8-33

16 16 COS ...8-34
17 17 CURTQST ..8-35
18 18 CURTRQ ...8-36
19 19 CUT ..8-37
20 20 DATE$...8-38
21 21 DECEL ..8-39
22 22 DEF FN ..8-40
23 23 DEGRAD ..8-41
24 24 DELAY ..8-42
25 25 DI ...8-43
26 26 DIM ..8-44
27 27 DIST ..8-45
28 28 DO ...8-46
29 29 DRIVE ...8-48
30 30 DRIVEI ..8-52
31 31 END SELECT ..8-57
32 32 END SUB ...8-58
33 33 ERR / ERL ..8-59
34 34 ETHSTS ..8-60
35 35 EXIT FOR ..8-61
36 36 EXIT SUB ...8-62
37 37 EXIT TASK ...8-63
38 38 FOR to NEXT ..8-64
39 39 GEPSTS ...8-65
40 40 GOSUB to RETURN8-66
41 41 GOTO ...8-67
42 42 HALT ...8-68
43 43 HALTALL ...8-69
44 44 HAND ...8-70
45 45 HOLD ...8-73
46 46 HOLDALL ..8-74
47 47 IF ..8-75
48 48 INPUT ..8-77
49 49 INT ..8-79
50 50 JTOXY ..8-80

51 51 LEFT$..8-81
52 52 LEFTY ..8-82
53 53 LEN ...8-83
54 54 LET ..8-84
55 55 LO ..8-87
56 56 LOCx ..8-89
57 57 LSHIFT ...8-91
58 58 MCHREF ...8-92
59 59 MID$..8-93
60 60 MO ...8-94
61 61 MOTOR ..8-96
62 62 MOVE ...8-97
63 63 MOVEI .. 8-112
64 64 MOVET ... 8-122
65 65 MTRDUTY .. 8-132
66 66 OFFLINE ... 8-133
67 67 ON ERROR GOTO 8-134
68 68 ON to GOSUB 8-135
69 69 ON to GOTO 8-136
70 70 ONLINE .. 8-137
71 71 OPEN ... 8-138
72 72 ORD ... 8-139
73 73 ORGORD ... 8-140
74 74 ORIGIN .. 8-141
75 75 OUT .. 8-142
76 76 OUTPOS ... 8-143
77 77 PATH ... 8-145
78 78 PATH END ... 8-151
79 79 PATH SET ... 8-152
80 80 PATH START .. 8-155
81 81 PDEF ... 8-159
82 82 PGMTSK ... 8-160
83 83 PGN ... 8-161
84 84 PMOVE ... 8-162
85 85 Pn ... 8-166

86 86 PPNT ... 8-168
87 87 PRINT .. 8-169
88 88 PSHFRC .. 8-170
89 89 PSHJGSP .. 8-171
90 90 PSHMTD ... 8-172
91 91 PSHRSLT .. 8-173
92 92 PSHSPD .. 8-174
93 93 PSHTIME ... 8-175
94 94 PUSH .. 8-176
95 95 RADDEG .. 8-181
96 96 REM .. 8-182
97 97 RESET .. 8-183
98 98 RESTART ... 8-184
99 99 RESUME .. 8-185
100 100 RETURN ... 8-186
101 101 RIGHT$... 8-187
102 102 RIGHTY ... 8-188
103 103 RSHIFT .. 8-189
104 104 SELECT CASE to END SELECT 8-190
105 105 SEND .. 8-191
106 106 SERVO .. 8-193
107 107 SET .. 8-194
108 108 SETGEP ... 8-195
109 109 SGI ... 8-196
110 110 SGR .. 8-197
111 111 SHARED .. 8-198
112 112 SHIFT .. 8-199
113 113 SI .. 8-200
114 114 SID .. 8-201
115 115 SIN ... 8-202
116 116 SIW ... 8-203
117 117 Sn ... 8-204
118 118 SO .. 8-205
119 119 SOD .. 8-207

120 120 SOW ... 8-208
121 121 SPEED ... 8-209
122 122 SQR .. 8-210
123 123 START ... 8-211
124 124 STR$.. 8-212
125 125 SUB to END SUB 8-213
126 126 SUSPEND .. 8-215
127 127 SWI ... 8-216
128 128 TAN .. 8-217
129 129 TCOUNTER ... 8-218
130 130 TIME$... 8-219
131 131 TIMER ... 8-220
132 132 TO ... 8-221
133 133 TOLE ... 8-222
134 134 TORQUE ... 8-223
135 135 TSKPGM ... 8-225
136 136 VAL ... 8-226
137 137 WAIT ... 8-227
138 138 WAIT ARM .. 8-228
139 139 WEIGHT .. 8-229
140 140 WEND ... 8-230
141 141 WHERE .. 8-231
142 142 WHILE to WEND 8-232
143 143 WHRXY ... 8-233
144 144 XYTOJ .. 8-234

8

9

10

11

12

13

How to read the robot language table 8-1

 How to read the robot language table

The key to reading the following robot language table is explained below.

(1) (2) (3) (4)
| | | |

No. Name Description Online Type

26 DIM Declares array variable - Command

(1) No.

 Indicates the Item No. where this robot language is explained in detail.

 26 DIM
Declares array variable

Format

DIM array definition , array definition ,…

Format

name % (constant , constant , constant)
!
$

 Values constant Array subscript: 0 to 32,767 (positive integer)

 Explanation Directly declares the name and length (number of elements) of an array variable. A

maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can

be declared in a single line by using comma (,) to separate.

• Array subscripts can be "0 to a specified value", with their total number being the

• A "9.300: Memory full" error may occur depending on the size of each dimension in an

array.

SAMPLE

DIM A%(10) ････････････････････････ Defines a integer array
variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) ･････････････････････ Defines a real array variable
B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60).

DIM C%(2,2),D!(10) ････････････ Defines an integer array C%
(0,0) to C% (2,2) and a real
array D! (0) to D! (10).

MEMO constant + 1.

defined

Example of "No." column

No.

(2) Description

 Explains the function of the robot language.

(3) Online

 If "3" is indicated at this item, online commands can be used.

 If "-" is indicated at this item, commands containing operands that cannot partially be

 executed by online command.

(4) Type

 Indicates the robot language type as "Command" or "Function".

 When a command is used as both a "Command" and "Function", this is expressed as follows:

Command/Function

8-2 Chapter 8 Robot Language Lists

8

9

10

11

12

13

 Command list in alphabetic order

No. Name Description Online Type

A
1 ABS Acquires the absolute value of a specified value. 3 Function

2 ABSRPOS
Acquires the machine reference value for specified robot
axes. (Valid only for axes whose return-to-origin method is
set as "mark".)

3 Function

3 ACCEL Specifies/acquires the acceleration coefficient parameter of
a specified robot. 3

Command /
Function

4 ARCHP1 Specifies/acquires the arch position 1 parameter of a
specified robot. 3

Command /
Function

4 ARCHP2 Specifies/acquires the arch position 2 parameter of a
specified robot. 3

Command /
Function

5 ARMCND Acquires the current arm status of a specified robot. 3 Function

6 ARMSEL Specifies/acquires the current "hand system" setting of a
specified robot. 3

Command /
Function

7 ARMTYP Specifies/acquires the "hand system" setting of a specified
robot. 3

Command /
Function

8 ASPEED Specifies/acquires the AUTO movement speed of a
specified robot. 3

Command /
Function

9 ATN Acquires the arctangent of the specified value. 3 Function
9 ATN2 Acquires the arctangent of the specified X-Y coordinates. 3 Function

10 AXWGHT Specifies/acquires the axis tip weight parameter of a
specified robot. 3

Command /
Function

C
11 CALL Calls a sub-procedure. - Command
12 CHANGE Switches the hand of a specified robot. 3 Command
13 CHGPRI Changes the priority ranking of a specified task. 3 Command
14 CHR$ Acquires a character with the specified character code. 3 Function
15 CLOSE Close the specified General Ethernet Port. 3 Command
16 COS Acquires the cosine value of a specified value. 3 Function

17 CURTQST Acquires the current torque value ratio of a specified axis to
the rated torque. 3 Function

18 CURTRQ Acquires the current torque value of the specified axis of a
specified robot. 3 Function

19 CUT Terminates another task currently being executed or
temporarily stopped. 3 Command

D
20 DATE$ Acquires the date as a "yy/mm/dd" format character string. 3 Function

21 DECEL Specifies/acquires the deceleration rate parameter of a
specified robot. 3

Command /
Function

22 DEF FN Defines the functions that can be used by the user. - Command
23 DEGRAD Converts a specified value to radians (↔RADDEG). 3 Function
24 DELAY Waits for the specified period (units: ms). - Command
25 DI Acquires the specified DI status. 3 Function
26 DIM Declares the array variable name and the number of elements. - Command
27 DIST Acquires the distance between 2 specified points. 3 Function

28 DO Outputs a specified value to the DO port or acquires the DO
status. 3

Command /
Function

29 DRIVE Moves a specified axis of a specified robot to an absolute position. 3 Command

8

9

10

11

12

13

Command list in alphabetic order 8-3

No. Name Description Online Type
30 DRIVEI Moves a specified axis of a specified robot to a relative position. 3 Command

E
31 END SELECT Terminates the SELECT CASE statement. - Command
32 END SUB Terminates the sub-procedure definition. - Command

33 ERR / ERL Acquires the error code number of an error which has
occurred / the line number where an error occurred. 3 Function

34 ETHSTS Acquires the Ethernet port status. 3 Function
35 EXIT FOR Terminates the FOR to NEXT statement loop. - Command

36 EXIT SUB Terminates the sub-procedure defined by the SUB to END
statement. - Command

37 EXIT TASK Terminates its own task which is in progress. - Command

F

38 FOR to NEXT Executes the FOR to NEXT statement repeatedly until a
specified value is exceeded. - Command

G
39 GEPSTS Acquires the General Ethernet Port status. 3 Function

40 GOSUB to
RETURN

Jumps to a subroutine with the label specified by GOSUB
statement, and executes that subroutine. - Command

41 GOTO Unconditionally jumps to the line specified by a label. - Command

H
42 HALT Stops the program and performs a reset. - Command
43 HALTALL Stops and resets all programs. - Command
44 HAND Defines the hand of a specified robot. 3 Command
45 HOLD Temporarily stops the program. - Command
46 HOLDALL Temporarily stops all programs. - Command

I
47 IF Allows control flow to branch according to conditions. - Command
48 INPUT Assigns a value to a variable specified from the programming box. 3 Command

49 INT Acquires an integer for a specified value by truncating all
decimal fractions. 3 Function

J

50 JTOXY Converts joint coordinate data to Cartesian coordinate data
of a specified robot. (↔XYTOJ) 3 Function

L

51 LEFT$ Extracts a character string comprising a specified number
of digits from the left end of a specified character string. 3 Function

52 LEFTY Sets the hand system of a specified robot to the left-handed
system. 3 Command

53 LEN Acquires the length (byte count) of a specified character string. 3 Function
54 LET Executes a specified assignment statement. 3 Command

55 LO Outputs a specified value to the LO port to enable/disable
axis movement or acquires the LO status. 3

Command /
Function

56 LOCx Specifies/acquires point data for a specified axis or shift
data for a specified element. 3

Command /
Function

57 LSHIFT Shifts a value to the left by the specified bit count. (↔RSHIFT) 3 Function

8-4 Chapter 8 Robot Language Lists

8

9

10

11

12

13

No. Name Description Online Type

M

58 MCHREF
Acquires the return-to-origin or absolute-search machine
reference value for specified robot axes. (Valid only for axes
whose return-to-origin method is set as "sensor" or "stroke-
end".)

3 Function

59 MID$ Extracts a character string of a desired length from a
specified character string. 3 Function

60 MO Outputs a specified value to the MO port or acquires the
MO status. 3

Command /
Function

61 MOTOR Controls the motor power status. 3 Command
62 MOVE Performs absolute movement of all axes of a specified robot. 3 Command
63 MOVEI Performs relative movement of all axes of a specified robot. 3 Command

64 MOVET Performs relative movement of all axes of a specified robot
when the tool coordinate is selected. 3 Command

65 MTRDUTY Acquires the motor load factor of the specified axis. 3 Function

O
66 OFFLINE Sets a specified communication port to the "offline" mode. 3 Command

67 ON ERROR
GOTO

This command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.

- Command

68 ON to GOSUB
Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

- Command

69 ON to GOTO Jumps to label-specified lines in accordance with the conditions. - Command
70 ONLINE Sets the specified communication port to the "online" mode. 3 Command
71 OPEN Opens the specified General Ethernet Port. 3 Command

72 ORD Acquires the character code of the first character in a
specified character string. 3 Function

73 ORGORD
Specifies/acquires the axis sequence parameter for
performing return-to-origin and an absolute search
operation in a specified robot.

3
Command /

Function

74 ORIGIN Performs return-to-origin. 3 Command

75 OUT Turns ON the bits of the specified output ports and
terminates the command statement. - Command

76 OUTPOS Specifies/acquires the "OUT position" parameter of a
specified robot. 3

Command /
Function

P
77 PATH Specifies the PATH motion path. - Command
78 PATH END Ends the path setting for PATH motion. - Command
79 PATH SET Starts the path setting for PATH motion. - Command
80 PATH START Starts the PATH motion. - Command
81 PDEF Defines the pallet used to execute pallet movement commands. 3 Command

82 PGMTSK Acquires the task number in which a specified program is
registered. 3 Function

83 PGN Acquires the program number from a specified program
name. 3 Function

84 PMOVE Executes the pallet movement command of a specified robot. 3 Command
85 Pn Defines points within a program. 3 Command

86 PPNT Creates point data specified by a pallet definition number
and pallet position number. 3 Function

87 PRINT Displays a character string at the programming box screen. - Command

8

9

10

11

12

13

Command list in alphabetic order 8-5

No. Name Description Online Type

88 PSHFRC Specifies/acquires the "Push force" parameter. 3
Command /

Function

89 PSHJGSP Specifies/acquires the push judge speed threshold
parameter. 3

Command /
Function

90 PSHMTD Specifies/acquires the push method parameter. 3
Command /

Function
91 PSHRSLT Acquires the status at the end of the PUSH statement. 3 Function

92 PSHSPD Specifies/acquires the push speed parameter. 3
Command /

Function

93 PSHTIME Specifies/acquires the push time parameter. 3
Command /

Function
94 PUSH Executes a pushing operation in the axis unit. 3 Command

R
95 RADDEG Converts a specified value to degrees. (↔DEGRAD) 3 Function
96 REM Expresses a comment statement. - Command
97 RESET Turns the bit of a specified output port OFF. 3 Command
98 RESTART Restarts another task during a temporary stop. 3 Command
99 RESUME Resumes program execution after error recovery processing. - Command

100 RETURN Returns the processing branching with GOSUB to the next
line of GOSUB. - Command

101 RIGHT$ Extracts a character string comprising a specified number
of digits from the right end of a specified character string. 3 Function

102 RIGHTY Sets the hand system of a specified robot to the right-
handed system. 3 Command

103 RSHIFT Shifts a value to the right by the specified bit count. (↔LSHIFT) 3 Function

S

104 SELECT CASE
to END SELECT Allows control flow to branch according to conditions. - Command

105 SEND Sends a file. 3 Command

106 SERVO Controls the servo ON/OFF of a specified axis or all axes of
a specified robot. 3 Command

107 SET Turns the bit at the specified output port ON. - Command
108 SETGEP Sets the General Ethernet Port. 3 Command

109 SGI Assigns the value to a specified integer type static variable /
acquires the value of a specified integer type static variable. 3

Command /
Function

110 SGR Assigns the value to a specified real type static variable /
acquires the value of a specified real type static variable. 3

Command /
Function

111 SHARED Enables reference with a sub-procedure without transferring a variable. - Command

112 SHIFT Sets the shift coordinate for a specified robot by using the
shift data specified by a shift variable. 3 Command

113 SI Acquires a specified SI status. 3 Function

114 SID Acquires a specified serial input's double-word information
status. 3 Function

115 SIN Acquires the sine value for a specified value. 3 Function
116 SIW Acquires a specified serial input's word information status. 3 Function
117 Sn Defines the shift coordinates within the program. 3 Command

118 SO Outputs a specified value to the SO port or acquires the SO
status. 3

Command /
Function

119 SOD Outputs a specified serial output's double-word information
or acquires the output status. 3

Command /
Function

120 SOW Outputs a specified serial output's word information or
acquires the output status. 3

Command /
Function

8-6 Chapter 8 Robot Language Lists

8

9

10

11

12

13

No. Name Description Online Type
121 SPEED Changes the program movement speed of a specified robot. 3 Command
122 SQR Acquires the square root of a specified value. 3 Function

123 START Specifies the task number and priority ranking of a specified
program, and starts that program. 3 Command

124 STR$ Converts a specified value to a character string (↔VAL). 3 Function
125 SUB to END SUB Defines a sub-procedure. - Command
126 SUSPEND Temporarily stops another task which is being executed. - Command

127 SWI Switches the program being executed, then begins
execution from the first line. - Command

T
128 TAN Acquires the tangent value for a specified value. 3 Function

129 TCOUNTER Outputs count-up values at 1ms intervals starting from the
point when the TCOUNTER variable is reset. 3 Function

130 TIME$ Acquires the current time as an "hh:mm:ss" format character string. 3 Function
131 TIMER Acquires the current time in seconds, counting from midnight. 3 Function

132 TO Outputs a specified value to the TO port or acquires the TO
status. 3

Command /
Function

133 TOLE Specifies/acquires the tolerance parameter of a specified
robot. 3

Command /
Function

134 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified axis of a specified robot. 3

Command /
Function

135 TSKPGM Acquires the program number which is registered in a
specified task. 3 Function

V

136 VAL Converts the numeric value of a specified character string
to an actual numeric value. (↔STR$) 3 Function

W

137 WAIT Waits until the conditions of the DI/DO conditional
expression are met (with time-out). - Command

138 WAIT ARM Waits until the axis operation of a specified robot is completed. - Command

139 WEIGHT Specifies/acquires the tip weight parameter of a specified
robot. 3

Command /
Function

140 WEND Terminates the command block of the WHILE statement. - Command

141 WHERE Reads out the current position of the arm of a specified
robot in joint coordinates (pulse). 3 Function

142 WHILE to WEND Controls repeated operations. - Command

143 WHRXY Reads out the current position of the arm of a specified
robot as Cartesian coordinates (mm, degrees). 3 Function

X

144 XYTOJ Converts the point variable Cartesian coordinate data to the
joint coordinate data of a specified robot. (↔JTOXY). 3 Function

8

9

10

11

12

13

Operation-specific 8-7

 Operation-specific

Program commands

General commands

No. Command Description Online Type

26 DIM Declares the array variable name and the number of
elements. - Command

54 LET Executes a specified assignment statement. 3 Command
96 REM Expresses a comment statement. - Command

Arithmetic commands

No. Command Description Online Type
1 ABS Acquires the absolute value of a specified value. 3 Function
9 ATN Acquires the arctangent of the specified value. 3 Function
9 ATN2 Acquires the arctangent of the specified X-Y coordinates. 3 Function

16 COS Acquires the cosine value of a specified value. 3 Function
23 DEGRAD Converts a specified value to radians (↔RADDEG). 3 Function
27 DIST Acquires the distance between 2 specified points. 3 Function

49 INT Acquires an integer for a specified value by truncating all
decimal fractions. 3 Function

57 LSHIFT Shifts a value to the left by the specified bit count.
(↔RSHIFT) 3 Function

95 RADDEG Converts a specified value to degrees. (↔DEGRAD) 3 Function

103 RSHIFT Shifts a value to the right by the specified bit count.
(↔LSHIFT) 3 Function

115 SIN Acquires the sine value for a specified value. 3 Function
122 SQR Acquires the square root of a specified value. 3 Function
128 TAN Acquires the tangent value for a specified value. 3 Function

Date / time

No. Command Description Online Type
20 DATE $ Acquires the date as a "yy/mm/dd" format character string. 3 Function

129 TCOUNTER Outputs count-up values at 1ms intervals starting from the
point when the TCOUNTER variable is reset. 3 Function

130 TIME $ Acquires the current time as an "hh:mm:ss" format
character string. 3 Function

131 TIMER Acquires the current time in seconds, counting from
midnight. 3 Function

Character string operation

No. Command Description Online Type
14 CHR $ Acquires a character with the specified character code. 3 Function

51 LEFT $ Extracts a character string comprising a specified number
of digits from the left end of a specified character string. 3 Function

53 LEN Acquires the length (byte count) of a specified character
string. 3 Function

59 MID $ Extracts a character string of a desired length from a
specified character string. 3 Function

8-8 Chapter 8 Robot Language Lists

8

9

10

11

12

13

No. Command Description Online Type

72 ORD Acquires the character code of the first character in a
specified character string. 3 Function

101 RIGHT $ Extracts a character string comprising a specified number
of digits from the right end of a specified character string. 3 Function

124 STR $ Converts a specified value to a character string (↔VAL). 3 Function

136 VAL Converts the numeric value of a specified character string
to an actual numeric value. (↔STR$) 3 Function

Point, coordinates, shift coordinates

No. Command Description Online Type
12 CHANGE Switches the hand of a specified robot. 3 Command
44 HAND Defines the hand of a specified robot. 3 Command

50 JTOXY Converts joint coordinate data to Cartesian coordinate data
of a specified robot. (↔XYTOJ) 3 Function

52 LEFTY Sets the hand system of a specified robot to the left-handed
system. 3 Command

56 LOCx Specifies/acquires point data for a specified axis or shift
data for a specified element. 3

Command /
Function

77 PATH Sets the movement path. - Command
85 Pn Defines points within a program. 3 Command

86 PPNT Creates point data specified by a pallet definition number
and pallet position number. 3 Function

102 RIGHTY Sets the hand system of a specified robot to the right-
handed system. 3 Command

117 Sn Defines the shift coordinates within the program. 3 Command

112 SHIFT Sets the shift coordinate for a specified robot by using the
shift data specified by a shift variable. 3 Command

144 XYTOJ Converts the point variable Cartesian coordinate data to the
joint coordinate data of a specified robot. (↔JTOXY). 3 Function

Branching commands

No. Command Description Online Type
35 EXIT FOR Terminates the FOR to NEXT statement loop. - Command

38 FOR to NEXT Executes the FOR to NEXT statement repeatedly until a
specified value is exceeded. - Command

40 GOSUB to
RETURN

Jumps to a subroutine with the label specified by GOSUB
statement, and executes that subroutine. - Command

41 GOTO Unconditionally jumps to the line specified by a label. - Command
47 IF Allows control flow to branch according to conditions. - Command

68 ON to GOSUB
Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

- Command

69 ON to GOTO Jumps to label-specified lines in accordance with the conditions. - Command

104 SELECT CASE
to END SELECT Allows control flow to branch according to conditions. - Command

142 WHILE to WEND Controls repeated operations. - Command

8

9

10

11

12

13

Operation-specific 8-9

Error control

No. Command Description Online Type

33 ERR / ERL Acquires the error code number of an error which has
occurred / the line number where an error occurred. 3 Function

67 ON ERROR
GOTO

This command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.

- Command

99 RESUME Resumes program execut ion af ter error recovery
processing. - Command

Program & task control

Program control

No. Command Description Online Type
11 CALL Calls a sub-procedure. - Command
42 HALT Stops the program and performs a reset. - Command
43 HALTALL Stops and resets all programs. - Command
45 HOLD Temporarily stops the program. - Command
46 HOLDALL Temporarily stops all programs. - Command

82 PGMTSK Acquires the task number in which a specified program is
registered. 3 Function

83 PGN Acquires the program number from a specified program
name. 3 Function

109 SGI Assigns/acquires the value to a specified integer type static
variable. 3

Command /
Function

110 SGR Assigns/acquires the value to a specified real type static
variable. 3

Command /
Function

127 SWI Switches the program being executed, then begins
execution from the first line. - Command

135 TSKPGM Acquires the program number which is registered in a
specified task. 3 Function

Task control

No. Command Description Online Type
13 CHGPRI Changes the priority ranking of a specified task. 3 Command

19 CUT Terminates another task currently being executed or
temporarily stopped. 3 Command

37 EXIT TASK Terminates its own task which is in progress. - Command
98 RESTART Restarts another task during a temporary stop. 3 Command

123 START Specifies the task number and priority ranking of a specified
program, and starts that program. 3 Command

126 SUSPEND Temporarily stops another task which is being executed. - Command

8-10 Chapter 8 Robot Language Lists

8

9

10

11

12

13

Robot control

Robot operations

No. Command Description Online Type
29 DRIVE Moves a specified axis of a specified robot to an absolute position. 3 Command
30 DRIVEI Moves a specified axis of a specified robot to a relative position. 3 Command
61 MOTOR Controls the motor power status. 3 Command
62 MOVE Performs absolute movement of all axes of a specified robot. 3 Command
63 MOVEI Performs relative movement of all axes of a specified robot. 3 Command

64 MOVET Performs relative movement of all axes of a specified robot
when the tool coordinate is selected. 3 Command

74 ORIGIN Performs return-to-origin. 3 Command

84 PMOVE Executes the pallet movement command of a specified
robot. 3 Command

94 PUSH Executes a pushing operation in the axis unit. 3 Command

106 SERVO Controls the servo ON/OFF of a specified axis or all axes of
a specified robot. 3 Command

Status acquisition

No. Command Description Online Type

2 ABSRPOS
Acquires the machine reference value for specified robot
axes. (Valid only for axes whose return-to-origin method is
set as "mark".)

3 Function

5 ARMCND Acquires the current arm status of a specified robot. 3 Function

6 ARMSEL Specifies/acquires the current "hand system" setting of a
specified robot. 3

Command /
Function

7 ARMTYP Specifies/acquires the "hand system" setting of a specified
robot. 3

Command /
Function

17 CURTQST Acquires the current torque value ratio of a specified axis to
the rated torque. 3 Function

58 MCHREF
Acquires the return-to-origin or absolute-search machine
reference value for specified robot axes. (Valid only for axes
whose return-to-origin method is set as "sensor" or "stroke-
end".)

3 Function

65 MTRDUTY Acquires the motor load factor of the specified axis. 3 Function
91 PSHRSLT Acquires the status at the end of the PUSH statement. 3 Function

92 PSHSPD Specifies/acquires the push speed parameter. 3
Command /

Function

93 PSHTIME Specifies/acquires the push time parameter. 3
Command /

Function
138 WAIT ARM Waits until the axis operation of a specified robot is completed. - Command

141 WHERE Reads out the current position of the arm of a specified
robot in joint coordinates (pulse). 3 Function

143 WHRXY Reads out the current position of the arm of a specified
robot as Cartesian coordinates (mm, degrees). 3 Function

Status change

No. Command Description Online Type

3 ACCEL Specifies/acquires the acceleration coefficient parameter of
a specified robot. 3

Command /
Function

4 ARCHP1 Specifies/acquires the arch position 1 parameter of a
specified robot. 3

Command /
Function

8

9

10

11

12

13

Operation-specific 8-11

No. Command Description Online Type

4 ARCHP2 Specifies/acquires the arch position 2 parameter of a
specified robot. 3

Command /
Function

8 ASPEED Specifies/acquires the AUTO movement speed of a
specified robot. 3

Command /
Function

10 AXWGHT Specifies/acquires the axis tip weight parameter of a
specified robot. 3

Command /
Function

12 CHANGE Switches the hand of a specified robot. 3 Command

21 DECEL Specifies/acquires the deceleration rate parameter of a
specified robot. 3

Command /
Function

44 HAND Defines the hand of a specified robot. 3 Command

52 LEFTY Sets the hand system of a specified robot to the left-handed
system. 3 Command

73 ORGORD
Specifies/acquires the axis sequence parameter for
performing return-to-origin and an absolute search
operation in a specified robot.

3
Command /

Function

76 OUTPOS Specifies/acquires the "OUT position" parameter of a
specified robot. 3

Command /
Function

81 PDEF Defines the pallet used to execute pallet movement
commands. 3 Command

88 PSHFRC Specifies/acquires the "Push force" parameter. 3
Command /

Function

89 PSHJGSP Specifies/acquires the push judge speed threshold
parameter. 3

Command /
Function

90 PSHMTD Specifies/acquires the push method parameter. 3
Command /

Function

102 RIGHTY Sets the hand system of a specified robot to the right-
handed system. 3 Command

108 SETGEP Sets the General Ethernet Port. 3 Command
121 SPEED Changes the program movement speed of a specified robot. 3 Command

133 TOLE Specifies/acquires the tolerance parameter of a specified
robot. 3

Command /
Function

139 WEIGHT Specifies/acquires the tip weight parameter of a specified
robot. 3

Command /
Function

PATH control

No. Command Description Online Type
77 PATH Specifies the PATH motion path. - Command
78 PATH END Ends the path setting for PATH motion. - Command
79 PATH SET Starts the path setting for PATH motion. - Command
80 PATH START Starts the PATH motion. - Command

Torque control

No. Command Description Online Type

17 CURTQST Acquires the current torque value ratio of a specified axis to
the rated torque. 3 Function

18 CURTRQ Acquires the current torque value of the specified axis of a
specified robot. 3 Function

94 PUSH Executes a pushing operation in the axis unit. 3 Command

134 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified axis of a specified robot. 3

Command /
Function

8-12 Chapter 8 Robot Language Lists

8

9

10

11

12

13

Input/output & communication control

Input/output control

No. Command Description Online Type
24 DELAY Waits for the specified period (units: ms). - Command

28 DO Outputs a specified value to the DO port or acquires the DO
status. 3

Command /
Function

55 LO Outputs a specified value to the LO port to enable/disable
axis movement or acquires the LO status. 3

Command /
Function

60 MO Outputs a specified value to the MO port or acquires the
MO status. 3

Command /
Function

75 OUT Turns ON the bits of the specified output ports and
terminates the command statement. - Command

97 RESET Turns the bit of a specified output port OFF. 3 Command
107 SET Turns the bit at the specified output port ON. - Command
113 SI Acquires a specified SI status. 3 Function

114 SID Acquires a specified serial input's double-word information
status. 3 Function

116 SIW Acquires a specified serial input's word information status. 3 Function

108 SO Outputs a specified value to the SO port or acquires the SO
status. 3

Command /
Function

119 SOD Outputs a specified serial output's double-word information
or acquires the output status. 3

Command /
Function

120 SOW Outputs a specified serial output's word information or
acquires the output status. 3

Command /
Function

132 TO Outputs a specified value to the TO port or acquires the TO
status. 3

Command /
Function

137 WAIT Waits until the conditions of the DI/DO conditional
expression are met (with time-out). - Command

Communication control

No. Command Description Online Type
15 CLOSE Close the specified General Ethernet Port. 3 Command
34 ETHSTS Acquires the Ethernet port status. 3 Function
39 GEPSTS Acquires the General Ethernet Port status. 3 Function
66 OFFLINE Sets a specified communication port to the "offline" mode. 3 Command
70 ONLINE Sets the specified communication port to the "online" mode. 3 Command
71 OPEN Opens the specified General Ethernet Port. 3 Command

105 SEND Sends a file. 3 Command

8

9

10

11

12

13

Functions: in alphabetic order 8-13

 Functions: in alphabetic order

No. Function Type Description

A
1 ABS Arithmetic function Acquires the absolute value of a specified value.

2 ABSRPOS Arithmetic function
Acquires the machine reference value for specified robot axes.
(Valid only for axes whose return-to-origin method is set as
"mark".)

3 ACCEL Arithmetic function Acquires the acceleration coefficient parameter of a specified robot.
4 ARCHP1 Arithmetic function Acquires the arch position 1 parameter of a specified robot.
4 ARCHP2 Arithmetic function Acquires the arch position 2 parameter of a specified robot.
5 ARMCND Arithmetic function Acquires the current arm status of a specified robot.
6 ARMSEL Arithmetic function Acquires the current “hand system” setting of a specified robot.
7 ARMTYP Arithmetic function Acquires the “hand system” setting of a specified robot.
8 ASPEED Arithmetic function Acquires the AUTO movement speed of a specified robot.
9 ATN Arithmetic function Acquires the arctangent of the specified value.
9 ATN2 Arithmetic function Acquires the arctangent of the specified X-Y coordinates.
10 AXWGHT Arithmetic function Acquires the axis tip weight parameter of a specified robot.

C

14 CHR$ Character string
function Acquires a character with the specified character code.

16 COS Arithmetic function Acquires the cosine value of a specified value.

17 CURTQST Arithmetic function Acquires the current torque value ratio of a specified axis to the
rated torque.

18 CURTRQ Arithmetic function Acquires the current torque value of the specified axis of a
specified robot.

D

19 DATE$ Character string
function Acquires the date as a "yy/mm/dd" format character string.

21 DECEL Arithmetic function Acquires the deceleration rate parameter of a specified robot.
23 DEGRAD Arithmetic function Converts a specified value to radians (↔RADDEG).
27 DIST Arithmetic function Acquires the distance between 2 specified points.

E

33 ERR / ERL Arithmetic function Acquires the error code number of an error which has occurred /
the line number where an error occurred.

34 ETHSTS Arithmetic function Acquires the Ethernet port status.

G

39 GEPSTS Arithmetic function Acquires the General Ethernet Port status.

I

49 INT Arithmetic function Acquires an integer for a specified value by truncating all
decimal fractions.

J

50 JTOXY Point function Converts joint coordinate data to Cartesian coordinate data of a
specified robot. (↔XYTOJ)

L

51 LEFT$ Character string
function

Extracts a character string comprising a specified number of
digits from the left end of a specified character string.

53 LEN Arithmetic function Acquires the length (byte count) of a specified character string.

8-14 Chapter 8 Robot Language Lists

8

9

10

11

12

13

No. Function Type Description

56 LOCx Point function Acquires point data for a specified axis or shift data for a
specified element.

57 LSHIFT Arithmetic function Shifts a value to the left by the specified bit count. (↔RSHIFT)

M

58 MCHREF Arithmetic function
Acquires the return-to-origin or absolute-search machine
reference for specified robot axes. (Valid only for axes whose
return-to-origin method is set as "sensor" or "stroke-end".)

59 MID$ Character string
function

Extracts a character string of a desired length from a specified
character string.

65 MTRDUTY Character string
function Acquires the motor load factor of the specified axis.

O

72 ORD Arithmetic function Acquires the character code of the first character in a specified
character string.

73 ORGORD Arithmetic function Acquires the axis sequence parameter for performing return-to-
origin and an absolute search operation of a specified robot.

76 OUTPOS Arithmetic function Acquires the "OUT position" parameter of a specified robot.

P

82 PGMTSK Arithmetic function Acquires the task number in which a specified program is
registered.

83 PGN Arithmetic function Acquires the program number from a specified program name.

86 PPNT Point function Creates point data specified by a pallet definition number and
pallet position number.

88 PSHFRC Arithmetic function Acquires the "Push force" parameter.
89 PSHJGSP Arithmetic function Acquires the push judge speed threshold parameter.
90 PSHMTD Arithmetic function Acquires the push method parameter.
91 PSHRSLT Arithmetic function Acquires the status at the end of the PUSH statement.
92 PSHSPD Arithmetic function Acquires the push speed parameter.
93 PSHTIME Arithmetic function Acquires the push time parameter.

R
95 RADDEG Arithmetic function Converts a specified value to degrees. (↔DEGRAD)

101 RIGHT$ Character string
function

Extracts a character string comprising a specified number of
digits from the right end of a specified character string.

103 RSHIFT Arithmetic function Shifts a value to the right by the specified bit count. (↔LSHIFT)

S
109 SGI Arithmetic function Acquires the value of a specified integer type static variable.
110 SGR Arithmetic function Acquires the value of a specified real type static variable.
113 SI Arithmetic function Acquires a specified SI status.

114 SID Arithmetic function Acquires a specified serial input's double-word information　
status.

115 SIN Arithmetic function Acquires the sine value for a specified value.
116 SIW Arithmetic function Acquires a specified serial input's word information status.
122 SQR Arithmetic function Acquires the square root of a specified value.

124 STR$ Character string
function Converts a specified value to a character string (↔VAL).

T
108 TAN Arithmetic function Acquires the tangent value for a specified value.

109 TCOUNTER Arithmetic function Outputs count-up values at 1ms intervals starting from the point
when the TCOUNTER variable is reset.

8

9

10

11

12

13

Functions: in alphabetic order 8-15

No. Function Type Description

130 TIME$ Character string
function

Acquires the current time as an "hh:mm:ss" format character
string.

131 TIMER Arithmetic function Acquires the current time in seconds, counting from midnight.
133 TOLE Arithmetic function Acquires the tolerance parameter of a specified robot.

134 TORQUE Arithmetic function Acquires the maximum torque command value which can be set
for a specified axis of a specified robot.

135 TSKPGM Arithmetic function Acquires the program number which is registered in a specified
task.

V

136 VAL Arithmetic function Converts the numeric value of a specified character string to an
actual numeric value. (↔STR$)

W
139 WEIGHT Arithmetic function Acquires the tip weight parameter of a specified robot.

141 WHERE Point function Reads out the current position of the arm of a specified robot in
joint coordinates (pulse).

143 WHRXY Point function Reads out the current position of the arm of a specified robot as
Cartesian coordinates (mm, degrees).

X

144 XYTOJ Point function Converts the point variable Cartesian coordinate data to the joint
coordinate data of a specified robot. (↔JTOXY).

8-16 Chapter 8 Robot Language Lists

8

9

10

11

12

13

 Functions: operation-specific

Point related functions

No. Function name Description

50 JTOXY Converts joint coordinate data to Cartesian coordinate data of a specified robot.
(↔XYTOJ)

56 LOCx Acquires point data for a specified axis or shift data for a specified element.
86 PPNT Creates point data specified by a pallet definition number and pallet position number.

141 WHERE Reads out the current position of the arm of a specified robot in joint coordinates
(pulse).

143 WHRXY Reads out the current position of the arm of a specified robot as Cartesian
coordinates (mm, degrees).

144 XYTOJ Converts the point variable Cartesian coordinate data to the joint coordinate data
of a specified robot. (↔JTOXY).

Parameter related functions

No. Function name Description

2 ABSRPOS Acquires the machine reference value for specified robot axes. (Valid only for
axes whose return-to-origin method is set as "mark".)

3 ACCEL Acquires the acceleration coefficient parameter of a specified robot.
4 ARCHP1 Acquires the arch position 1 parameter of a specified robot.
4 ARCHP2 Acquires the arch position 2 parameter of a specified robot.
5 ARMCND Acquires the current arm status of a specified robot.
6 ARMSEL Acquires the current "hand system" setting of a specified robot.
7 ARMTYP Acquires the "hand system" setting of a specified robot.

10 AXWGHT Acquires the axis tip weight parameter of a specified robot.
17 CURTQST Acquires the current torque value ratio of a specified axis to the rated torque.
18 CURTRQ Acquires the current torque value of the specified axis of a specified robot.
21 DECEL Acquires the deceleration rate parameter of a specified robot.
53 LEN Acquires the length (byte count) of a specified character string.

58 MCHREF
Acquires the return-to-origin or absolute-search machine reference for specified
robot axes. (Valid only for axes whose return-to-origin method is set as "sensor"
or "stroke-end".)

65 MTRDUTY Acquires the motor load factor of the specified axis.
72 ORD Acquires the character code of the first character in a specified character string.

73 ORGORD Acquires the axis sequence parameter for performing return-to-origin and an
absolute search operation of a specified robot.

76 OUTPOS Acquires the "OUT position" parameter of a specified robot.
88 PSHFRC Acquires the "Push force" parameter.
89 PSHJGSP Acquires the push judge speed threshold parameter.
90 PSHMTD Acquires the push method parameter.
91 PSHRSLT Acquires the status at the end of the PUSH statement.
92 PSHSPD Acquires the push speed parameter.
93 PSHTIME Acquires the push time parameter.
133 TOLE Acquires the tolerance parameter of a specified robot.

134 TORQUE Acquires the maximum torque command value which can be set for a specified
axis of a specified robot.

139 WEIGHT Acquires the tip weight parameter of a specified robot.

8

9

10

11

12

13

Functions: operation-specific 8-17

Program related functions

No. Function name Description
82 PGMTSK Acquires the task number in which a specified program is registered.
83 PGN Acquires the program number from a specified program name.
135 TSKPGM Acquires the program number which is registered in a specified task.

Numeric calculation related functions

No. Function name Description
1 ABS Acquires the absolute value of a specified value.
9 ATN Acquires the arctangent of the specified value.
9 ATN2 Acquires the arctangent of the specified X-Y coordinates.
16 COS Acquires the cosine value of a specified value.
23 DEGRAD Converts a specified value to radians (↔RADDEG).
27 DIST Acquires the distance between 2 specified points.
49 INT Acquires an integer for a specified value by truncating all decimal fractions.
57 LSHIFT Shifts a value to the left by the specified bit count. (↔RSHIFT)
95 RADDEG Converts a specified value to degrees. (↔DEGRAD)
103 RSHIFT Shifts a value to the right by the specified bit count. (↔LSHIFT)
115 SIN Acquires the sine value for a specified value.
122 SQR Acquires the square root of a specified value.
128 TAN Acquires the tangent value for a specified value.
136 VAL Converts the numeric value of a specified character string to an actual numeric value. (↔STR$)

Character string calculation related functions

No. Function name Description
14 CHR $ Acquires a character with the specified character code.
20 DATE $ Acquires the date as a "yy/mm/dd" format character string.

51 LEFT $ Extracts a character string comprising a specified number of digits from the left
end of a specified character string.

59 MID $ Extracts a character string of a desired length from a specified character string.

101 RIGHT $ Extracts a character string comprising a specified number of digits from the right
end of a specified character string.

124 STR $ Converts a specified value to a character string (↔VAL).
130 TIME $ Acquires the current time as an "hh:mm:ss" format character string.

Other functions

No. Function name Description

33 ERR / ERL Acquires the error code number of an error which has occurred / the line number
where an error occurred.

34 ETHSTS Acquires the Ethernet port status.
39 GEPSTS Acquires the General Ethernet Port status.
109 SGI Acquires the value of a specified integer type static variable.
110 SGR Acquires the value of a specified real type static variable.

129 TCOUNTER Outputs count-up values at 1ms intervals starting from the point when the
TCOUNTER variable is reset.

131 TIMER Acquires the current time in seconds, counting from midnight.

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-18 Chapter 8 Robot Language Lists

 1 ABS
Acquires absolute values

Format

ABS (expression)

 Explanation Returns a value specified by an <expression> as an absolute value.

SAMPLE

A=ABS(-326.55) ·················· The absolute value of -362.54 (=362.54)

is assigned to variable A.

A

B

C

D

E

F

G

H

I

J

K

L

M

8

ABSRPOS 8-19

 2 ABSRPOS
Acquires the machine reference value (axes: mark method)

Format

ABSRPOS [robot number] (axis number)

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 Axis number1 to 6

 Explanation Acquires the machine reference value of axes specified by an <axis number>.

 This function is valid only for axes whose return-to-origin method is set as "Mark", not

for "Sensor" or "Stroke-end".

• At axes where return-to-origin method is set to "mark" method, absolute reset is possible when

the machine reference value is in a 44 to 56% range.

SAMPLE

A=ABSRPOS(4) ···················· The machine reference value for axis 4

of robot 1 is assigned to variable A.

MEMO

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-20 Chapter 8 Robot Language Lists

 3 ACCEL
Specifies/acquires the acceleration coefficient parameter

Format

1. ACCEL [robot number] expression

2. ACCEL [robot number] (axis number)=expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 100 (units: %)

 Explanation Changes the acceleration coefficient parameter of the robot axis specified by the

<robot number> to the value specified by the <expression>.

 In format 1, the change occurs at all axes specified with a specified robot.

 In format 2, the change occurs at the axis specified in <axis number>.

Functions

Format

ACCEL [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation The acceleration coefficient parameter value is acquired for the axis specified by the

<axis number> among the robot axes specified by the <robot number>.

SAMPLE

A=50

ACCEL A The acceleration coefficient of all axes of robot 1 becomes 50%.

ACCEL(3)=100 ···················· Only axis 3 of robot 1 becomes 100%.

’CYCLE WITH INCREASING ACCELERATION

FOR A=10 TO 100 STEP 10 ········· The acceleration coefficient parameter

is increased from 10% to 100% in 10%

increments.

 ACCEL A

 MOVE P,P0

 MOVE P,P1

NEXT A

A=ACCEL(3) The acceleration coefficient parameter of axis 3 of robot 1 is

assigned to variable A.

HALT "END TEST"

A

B

C

D

E

F

G

H

I

J

K

L

M

8

ARCHP1 / ARCHP2 8-21

 4 ARCHP1 / ARCHP2
Specifies/acquires the arch position parameter

Format

1. ARCHP1 [robot number] expression

2. ARCHP1 [robot number] (axis number)=expression

Format

1. ARCHP2 [robot number] expression

2. ARCHP2 [robot number] (axis number)=expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression0 to 99999999 (Unit: pulses)

 Explanation ARCHP1 corresponds to the arch position 1 parameter; ARCHP2 corresponds to the

arch position 2 parameter, respectively. Changes the parameter’s arch position to the

value indicated in the <expression>.

 Format 1 changes all axes specified by <robot number>.

 Format 2 changes the only axis specified by <axis number> to the value indicated in

the <expression>.

Functions

Format

ARCHP1 [robot number] (axis number)

Format

ARCHP2 [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation ARCHP1 corresponds to the arch position 1 parameter; ARCHP2 corresponds to the

arch position 2 parameter, respectively.

 Acquires the arch position parameter value of the axis specified at <axis number>.

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-22 Chapter 8 Robot Language Lists

 4 ARCHP1 / ARCHP2

SAMPLE

ARCHP1（3（=10 ···················· The arch position 1 parameter value of

the 3rd axis of robot 1 changes to 10

pulses.

ARCHP2（3（=20 ···················· The arch position 2 parameter value of

the 3rd axis of robot 1 changes to 20

pulses.

 .

 .

 .

FOR B=1 TO 4

 SAV（B-1（=ARCHP1（B（ ··········· The arch position parameters ARCHP1(1)

to (4) are assigned to array variables

SAV(0) to (3).

NEXT

A

B

C

D

E

F

G

H

I

J

K

L

M

8

ARMCND 8-23

 5 ARMCND
Acquires the current arm status

Format

ARMCND [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation This function acquires the current arm status of the SCARA robot. The robot to

acquire an arm status is specified by the <robot number>.

 The arm status is "1" for a right-handed system and "2" for a left-handed system.

SAMPLE

A=ARMCND ····················· The current arm status of robot 1 is

assigned to variable A.

IF A=1 THEN ····················· Right-handed system status.

 MOVE P, P100, Z=0

ELSE ····················· Left-handed system status.

 MOVE P, P200, Z=0

ENDIF

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-24 Chapter 8 Robot Language Lists

 6 ARMSEL
Sets/acquires the current hand system selection

Format

ARMSEL [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression1: right hand system; 2: left hand system

 Explanation This function sets the current hand system selection of the SCARA robot. A robot to

set a hand system is specified by the <robot number>.

SAMPLE

ARMSEL[2] 2 ···················· Sets the left-handed system for the

hand system selection of the robot 2.

Functions

Format

ARMSEL [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation This function acquires the hand system currently selected for the SCARA robot. The

robot to acquire a hand system is specified by the <robot number>.

 The arm type is "1" for a right-handed system, and "2" for a left-handed system.

SAMPLE

A=ARMSEL ····················· The current hand system selection of

robot 1 is assigned to the variable A.

IF A=1 THEN ····················· The hand system selection is

 a right-handed system.

 MOVE P,P100,Z=0

ELSE ····················· The hand system selection is

 a left-handed system.

 MOVE P,P200,Z=0

ENDIF

A

B

C

D

E

F

G

H

I

J

K

L

M

8

ARMTYP 8-25

 7 ARMTYP
Sets/acquires the hand system selection during program reset

Format

ARMTYP [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression1: right hand system; 2: left hand system

 Explanation This function sets the hand system at program reset of the SCARA robot. A robot to set

a hand system selection is specified by the <robot number>.

SAMPLE

ARMTYP[2] 2 ···················· Sets the left-handed system for the

hand system of the robot 2.

Functions

Format

ARMTYP [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation This function provides the hand system at program reset of the SCARA robot. The

robot to acquire a hand system is specified by the <robot number>.

 The arm type is "1" for a right-handed system, and "2" for a left-handed system.

SAMPLE

A=ARMTYP The arm type value of robot 1 is assigned to the variable A.

IF A=1 THEN ···················· The arm type is a right-handed system.

 MOVE P,P100,Z=0

ELSE ····················· The arm type is a left-handed system.

 MOVE P,P200,Z=0

ENDIF

HALTALL Program reset

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-26 Chapter 8 Robot Language Lists

 8 ASPEED
Sets/acquires the AUTO movement speed of a specified robot

Format

ASPEED [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression1 to 100 (units: %)

 Explanation Changes the automatic movement speed of the robot specified by the <robot

number> to the value indicated in the <expression>.

 This speed change applies to all axes.

 The operation speed is determined by the product of the automatic movement speed

(specified by programming box operation and by the ASPEED command), and the

program movement speed (specified by SPEED command, etc.).

 Operation speed = automatic movement speed x program movement speed.

 Example:

 Automatic movement speed 80%

 Program movement speed 50%

 Movement speed = 40% (80% × 50%)

Functions

Format

ASPEED [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Acquires the automatic movement speed value of the robot specified by the <robot

number>.

SAMPLE

SPEED 70

ASPEED 100

MOVE P,P0 ····················· Movement from the current position to P0

occurs at 70% speed (=100 * 70) of the

robot 1.

ASPEED 50

MOVE P,P1 ····················· Movement from the current position to P1

occurs at 35% speed (=50 * 70) of the robot 1.

MOVE P,P2,S=10 ·················· Movement from the current position to P2

occurs at 5% speed (=50 * 10) of the robot 1.

HALT

Related commands SPEED

NOTE
 • Automatic movement
speed

Specified by programming
box operat ion or by the
ASPEED command.

 • P r o g r a m m o v e m e n t
speed

Specified by SPEED commands
o r M O V E , D R I V E s p e e d
settings.

A

B

C

D

E

F

G

H

I

J

K

L

M

8

ATN / ATN2 8-27

 9 ATN / ATN2
Acquires the arctangent of the specified value

Format

ATN (expression)

Format

ATN2 (expression 1, expression 2)

 Explanation ATN: Acquires the arctangent values of the specified <expression> values. The

 acquired values are radians within the following range: -π / 2 to +π / 2

 ATN2: Acquires the arctangent values of the specified <expression 1> and

 <expression 2> X-Y coordinates. The acquired values are radians within

 the following range: -π to +π

SAMPLE

A(0)=A*ATN(Y/X) ················· The product of the expression (Y/X)

arctangent value and variable A is

assigned to array A (0).

A(0)=ATN(0.5) ··················· The 0.5 arctangent value is assigned

to array A (0).

A(0)=ATN2(B,C)-D ················ The difference between the X-Y

coordinates (B,C) arctangent value and

variable D is assigned to array A (0).

A(1)=RADDEG(ATN2(B,C)) ·········· The X-Y coordinates (B,C) arctangent

value is converted to degrees, and is

then assigned to array A (1).

Related commands COS, DEGRAD, RADDEG, SIN, TAN

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-28 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-28 Chapter 8 Robot Language Lists

 10 AXWGHT
Sets/acquires the axis tip weight

Format

AXWGHT [robot number] (axis number)=expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expressionVaries according to the specified robot.

 Explanation Changes the axis tip weight parameter for the specified axis to the <expression>

value.

 This statement is valid in systems with "MULTI" axes and auxiliary axes (the robot

type and auxiliary axes are factory set prior to shipment).

Functions

Format

AXWGHT [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the axis tip weight parameter value for the specified axis.

 This statement is valid in systems with "MULTI" axes and auxiliary axes.

SAMPLE

A=5

B=0

C=AXWGHT(1) ····················· Axis tip weight value of the axis 1 of

the robot 1 is acquired (the current

value is saved to variable C).

AXWGHT(1)=A

DRIVE(1,P0)

AXWGHT(1)=B

DRIVE(1,P1)

AXWGHT(1)=C ····················· The axis tip weight value of the axis

1 of the robot 1 is set again.

HALT

Related commands WEIGHT

8

CALL 8-29

A

B

C

D

E

F

G

H

I

J

K

L

M

 11 CALL
Calls a sub-procedure

Format

CALL label (actual argument , actual argument…)

 Explanation This statement calls up sub-procedures defined by the SUB to END SUB statements.

 The <label> specifies the same name as that defined by the SUB statement.

1. When a constant or expression is specified as an actual argument, its value is

passed on to the sub-procedure.

2. When a variable or array element is specified as an actual argument, its value

is passed on to the sub-procedure. It will be passed on as a reference if "REF" is

added at the head of the actual argument.

3. When an entire array (array name followed by parentheses) is specified as an

actual argument, it is passed along as a reference.

• CALL statements can be used up to 120 times in succession. Note that this number is reduced

if commands which use stacks such as an FOR or GOSUB statement are used, or depending on

the use status of identifiers.

• Always use the END SUB or EXT SUB statement to end a sub-procedure which has been called

with the CALL statement. If another statement such as GOTO is used to jump out of the sub-

routine, a "5.212: Stack overflow" error, etc., may occur.

SAMPLE 1

X%=4

Y%=5

CALL *COMPARE (REF X%, REF Y%)

HALT

’SUB ROUTINE: COMPARE

SUB *COMPARE (A%, B%)

 IF A% < B% THEN

 TEMP%=A%

 A%=B%

 B%=TEMP%

 ENDIF

END SUB

SAMPLE 2

I = 1

CALL *TEST(I)

HALT

’SUB ROUTINE: TEST

SUB *TEST

 X = X + 1

 IF X < 15 THEN

 CALL *TEST(X)

 ENDIF

END SUB

Related commands SUB, END SUB, EXIT SUB, SHARED

NOTE
 • When a value is passed
on to a sub-procedure,
the original value of the
actual argument will not
be changed even if it
is changed in the sub-
procedure.

 • W h e n a r e fe r e n c e i s
p a s s e d o n t o a s u b -
procedure, the original
v a l u e o f t h e a c t u a l
argument wi l l also be
changed if it is changed
in the sub-procedure.

 • F o r d e t a i l s , r e f e r t o
Chapter 3 "8 Value Pass-
Along & Reference Pass-
Along".

MEMO

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-30 Chapter 8 Robot Language Lists

 12 CHANGE
Switches the hand

Format

CHANGE [robot number] Hn

 OFF

 Values robot number 1 to 4 (If not input, robot 1 is specified.)

 n: hand number 0 to 31

 Explanation CHANGE is used to switch the robot hand specified by the <robot number>. If OFF is

specified, the hand setting is not enabled.

 Before hand switching can occur, the hands must be defined at the HAND statement,

the programming box, or the SCARA-YRCX Studio.

 For details, refer to section "44 HAND". If the hand data with another robot setting is

specified, "6.258: Illegal robot no" error occurs.

SAMPLE

HAND H1= 0 150.000 0.000

HAND H2= -5000 20.0000 0.000

P1=150.000 300.000 0.000 0.000 0.000 0.000

CHANGE H2 ····················· Changes the hand of the robot 1 to hand 2.

MOVE P,P1 ····················· Moves the hand 2 tip of the robot 1 to

P1 (1).

CHANGE H1 ····················· Changes to hand 1.

MOVE P,P1 ····················· Moves the hand 1 tip to P1 (2).

HALT

8

CHGPRI 8-31

A

B

C

D

E

F

G

H

I

J

K

L

M

 13 CHGPRI
Changes the priority ranking of a specified task

Format

CHGPRI Tn ,p

 <program name>

 PGm

 Values m: Program number 0 to 100

 n: Task number 1 to 16

 p: Task priority ranking 1 to 64

 Explanation Directly changes the priority ranking of the specified task ("n") to "p".

 The smaller the priority number, the higher the priority (high priority: 1 ⇔ low

priority: 64).

 When a READY status occurs at a task with higher priority, all tasks with lower

priority also remain in a READY status.

SAMPLE

START <SUB_PGM>,T2,33

*ST:

 MOVE P,P0,P1

 IF DI(20) = 1 THEN

 CHGPRI T2,32

 ELSE

 CHGPRI T2,33

 ENDIF

GOTO *ST

HALTALL

Program name:SUB_PGM

’SUBTASK ROUTINE

*SUBTASK:

 IF LOC3(WHERE) > 10000 THEN

 DO(20) = 1

 GOTO *SUBTASK

 ENDIF

 DO(20) = 0

GOTO *SUBTASK

EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, START

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-32 Chapter 8 Robot Language Lists

 14 CHR$
Acquires a character with the specified character code

Format

CHR$ (expression)

 Values expression0 to 255

 Explanation Acquires a character with the specified character code. An error occurs if the

<expression> value is outside the 0 to 255 range.

SAMPLE

A$=CHR$(65) ····················· "A" is assigned to A$.

Related commands ORD

8

CLOSE 8-33

A

B

C

D

E

F

G

H

I

J

K

L

M

 15 CLOSE
Closes the specified General Ethernet Port

Format

CLOSE GPm

 Values m: General Ethernet Port number 0 to 7

 Explanation Closes the communication port of the specified General Ethernet Port.

SAMPLE

OPEN GP1 ····················· Opens the General Ethernet Port 1.

SEND "123" TO GP1 ··············· Sends the character strings "123" from

the General Ethernet Port 1.

SEND GP1 TO A$ ·················· Receives the data from the General

Ethernet Port 1 and Saves the received

data in the variable A$.

CLOSE GP1 ····················· Closes the General Ethernet Port 1.

Related commands OPEN, SEND, SETGEP, GEPSTS

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-34 Chapter 8 Robot Language Lists

 16 COS
Acquires the cosine value of a specified value

Format

COS (expression)

 Values expressionAngle (units: radians)

 Explanation Acquires a cosine value for the <expression> value.

SAMPLE

A(0)=B*COS(C) ··················· The product of the C variable's cosine

value and variable B is assigned to array

A (0).

A(1)=COS(DEGRAD(20)) ············ The 20.0° cosine value is assigned to array

A (1).

Related commands ATN, DEGRAD, RADDEG, SIN, TAN

8

CURTQST 8-35

A

B

C

D

E

F

G

H

I

J

K

L

M

 17 CURTQST
Acquires the current torque value of a specified axis to the rated torque

Format

CURTQST [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the current torque value (-1000 to 1000) to the rated torque value of the

specified axis .

 The value is expressed as a percentage of the rated torque value. Plus/minus signs

indicate the direction.

SAMPLE

A = CURTQST(3) ·················· The current torque value against the

rated torque of the axis 3 of robot 1

is assigned to variable A.

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-36 Chapter 8 Robot Language Lists

 18 CURTRQ
Acquires the current torque of the specified axis

Format

CURTRQ [robot number] (expression)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression1 to 6

 Explanation Acquires the current torque value (-100 to 100) of the axis specified by the

<expression>.

 The value is expressed as a percentage of the maximum torque command value. Plus/

minus signs indicate the direction.

SAMPLE

A = CURTRQ(3) ··················· The current torque value of the axis 3

of robot 1 is assigned to variable A.

8

CUT 8-37

A

B

C

D

E

F

G

H

I

J

K

L

M

 19 CUT
Terminates another task which is currently being executed

Format

CUT Tn

 <program name>

 PGm

 Values m: Program number0 to 100

 n: Task number1 to 16

 Explanation Terminates another task which is currently being executed or which is temporarily

stopped. A task can be specified by the name or the number of a program in

execution.

 This statement cannot terminate its own task.

• If a task (program) not active is specified for the execution, an error occurs.

SAMPLE

’TASK1 ROUTINE

*ST:

 MO(20) = 0

 START <SUB_PGM>,T2

 MOVE P,P0

 MOVE P,P1

 WAIT MO(20) = 1

 CUT T2

GOTO *ST

HALTALL

Program name:SUB_PGM

’TASK2 ROUTINE

*SUBTASK2:

 P100=JTOXY(WHERE)

 IF LOC3(P100) >= 100.0 THEN

 MO(20) = 1

 ELSE

 DELAY 100

 ENDIF

GOTO *SUBTASK2

EXIT TASK

Related commands EXIT TASK, RESTART, START, SUSPEND

MEMO

8

8-38 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 20 DATE$
Acquires the date

Format

DATE$

 Explanation Acquires the date as a "yyyy/mm/dd" format character string.

 "yyyy" indicates the year, "mm" indicates the month, and "dd" indicates the day.

 Date setting is performed from an operation terminal such as a programming box.

SAMPLE

A$=DATE$

PRINT DATE$

HALT

Related commands TIME$

8

DECEL 8-39

A

B

C

D

E

F

G

H

I

J

K

L

M

 21 DECEL
Specifies/acquires the deceleration rate parameter

Format

1. DECEL [robot number] expression

2. DECEL [robot number] (axis number)=expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 100 (units: %)

 Explanation Change the deceleration rate parameter of the specified robot axis to the <expression>

value.

 In format 1, the change occurs at all axes of a specified robot.

 In format 2, the change occurs at the axis specified in <axis number>.

• The acceleration parameter can be changed by using the ACCEL statement.

Functions

Format

DECEL [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number 1 to 6

 Explanation Acquires the deceleration rate parameter value for the specified axis.

SAMPLE

A =50

DECEL A ···················· Specifies 50 in the deceleration

r a t e p a r a m e t e r f o r

all axes of robot 1

DECEL(3)=100 ·················· Specifies 100 as the deceleration

rate parameter for the axis 3 of

robot 1

’CYCLE WITH INCREASING DECELERATION

FOR A =10 TO 100 STEP 10

 DECEL A ·················· Sp e c i f i e s t h e v a r i a b l e A v a l u e i n

the deceleration rate parameter for

all axes of robot 1

 MOVE P ,P0

 MOVE P ,P1

NEXT A

A=DECEL(3) ····················· The deceleration rate parameter for

the axis 3 of robot 1 is assigned to

variable A.

HALT "END TEST "

MEMO

8

8-40 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 22 DEF FN
Defines functions which can be used by the user

Format

DEF FN name % (dummy argument, dummy argument…)=function definition expression

 !

 $

 Values name Function name. Max. of 16 characters including "FN".

 dummy argument Numeric or character string variable.

 Explanation Defines the functions which can be used by the user. Defined functions are called in

the FN <name> (<variable>) format.

• The <dummy argument> names are the same as the variable names used in the <function

definition expression>. The names of these variables are valid only when the <function

definition expression> is evaluated. There may be other variables with the same name in the

program.

• When calling a function that uses a <dummy argument>, specify the constant, variable, or

expression type which is the same as the <dummy argument> type. The <dummy argument>

can be omitted. If <dummy arguments> are the same type, the difference of variable names

does not affect.

• If a variable used in the <function definition expression> is not included in the <dummy

argument> list, the current value of that particular variable is used for the calculation.

• A space must be entered between "DEF" and "FN". If no space is entered, DEFFN will be

handled as a variable.

• The DEF FN statement cannot be used in sub-procedures.

• Definition by the DEF FN statement must be declared before statements which use functions.

SAMPLE

DEF FNPAI=3.141592

DEF FNASIN(X)=ATN(X/SQR(-X^2+1))

 ····················· Both the <dummy argument> and <function

definition expression> use "X".

 ·

 ·

 ·

A=FNASIN(B)*10 ·················· "X" is not required for calling.

MEMO

8

DEGRAD 8-41

A

B

C

D

E

F

G

H

I

J

K

L

M

 23 DEGRAD
Angle conversion (degree → radian)

Format

DEGRAD (expression)

 Values expressionAngle (units: degrees)

 Explanation The <expression> value is converted to radians.

• To convert radians to degrees, use RADDEG.

SAMPLE

A=COS(DEGRAD(30)) ··············· A cosine value which is converted 30°

to radians is assigned to variable A.

Related commands ATN, COS, RADDEG, SIN, TAN

MEMO

8

8-42 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 24 DELAY
Program execution waits for a specified period of time

Format

DELAY expression

 Values expression0 to 3600000 (units: ms)

 Explanation A "program wait" status is established for the period of time specified by the

<expression>. The minimum wait period is 1ms.

SAMPLE

DELAY 3500 3,500ms (3.5 secs) wait

A-50

DELAY A*10 500ms (0,5 secs) wait

8

DI 8-43

A

B

C

D

E

F

G

H

I

J

K

L

M

 25 DI
Acquires the input status from the parallel port

Format

1. LET expression = DIm(b,···,b)

2. LET expression = DI(mb,···,mb)

 Values m: port number

b: bit definition

0 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Indicates the parallel input signal status.

 Enter "0" if no input port exists.

SAMPLE

A%=DI2() ····················· The input status from DI (27) to DI (20)

is assigned to variable A%.

A%=DI5(7,4,0) ·················· The DI (57), DI (54), DI (50) input

status is assigned to variable A% (when

all the above signals are "1" (ON), A% = 7).

A%=DI(37,25,20) ················· The DI (37), DI (25), DI (20) input

status is assigned to variable A% (when

all the above signals except DI (20)

are "1" (ON), A% = 6).

 Reference For details, refer to Chapter 3 "9.3 Parallel input variable".

8

8-44 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 26 DIM
Declares array variable

Format

DIM array definition , array definition,…

Array definition

name % (constant , constant, constant)

 !

 $

 Values constant : Array subscript0 to 32,767 (positive integer)

 Explanation Declares the name and length (number of elements) of an array variable. A maximum

of 3 dimensions may be used for the array subscripts. Multiple arrays can be declared

in a single line by using comma (,) breakpoints to separate the arrays.

• The total number of array elements is <constant> + 1.

• A "9.300: Memory full" error may occur depending on the size of each dimension defined in an

array.

SAMPLE

DIM A%(10) ····················· Defines a integer array variable A% (0)

to A% (10). (Number of elements: 11).

DIM B(2,3,4) ···················· Defines a real array variable B (0, 0, 0)

to B (2, 3, 4). (Number of elements: 60).

DIM C%(2,2),D!(10) ·············· Defines an integer array C% (0,0) to C%

(2,2) and a real array D! (0) to D! (10).

MEMO

8

DIST 8-45

A

B

C

D

E

F

G

H

I

J

K

L

M

 27 DIST
Acquires the distance between 2 specified points

Format

DIST (point expression 1, point expression 2)

 Values point expression 1Cartesian coordinate system point

 point expression 2Cartesian coordinate system point

 Explanation Acquires the distance (units: mm) between the 2 points (X,Y,Z) specified by <point

expression 1> and <point expression 2>. An error occurs if the 2 points specified by

each <point expression> do not have Cartesian coordinates.

SAMPLE

A=DIST(P0,P1) ··················· The distance between P0 and P1 is

assigned to variable A.

8

8-46 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 28 DO
Outputs to parallel port or acquires the output status

Format

1. LET DOm (b,···,b) =expression

2. LET DO (mb,···,mb) =expression

 Values m: port number

b: bit definition

2 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Outputs the specified value to the DO port.

 No output will occur if a nonexistent DO port is specified.

 Outputs are not possible to DO0() and DO1(). These ports are for referencing only.

SAMPLE

DO2() = &B10111000 ·············· DO (27, 25, 24, 23) are turned ON, and

DO (26, 22, 21, 20) are turned OFF.

DO2(6,5,1) = &B010 ·············· DO (25) are turned ON, and DO (26, 21)

are turned OFF.

DO3() = 15 ····················· DO (33, 32, 31, 30) are turned ON, and

DO (37, 36, 35, 34) are turned OFF.

DO(37,35,27,20) = A ············· The contents of the 4 lower bits

acquired when variable A is converted

to an integer are output to DO (37,

35, 27, 20) respectively.

8

DO 8-47

A

B

C

D

E

F

G

H

I

J

K

L

M

 28 DO

Functions

Format

LET DOm (b,···,b)

LET DO (mb,···,mb)

 Values m: port number

b: bit definition

0 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation References the parallel port signal status.

SAMPLE

A%= DO2() ····················· Output status of ports DO(27) to DO(20)

is assigned to variable A%.

A%= DO0(6, 5, 1) ················ Output status of DO(06), DO(05) and

DO(01) is assigned to variable A%.

(If all above signals are 1(ON), then

A%=7.)

A%=DO(37,35,27,10) ·············· O u t p u t s t a t u s o f D 0 (3 7) ,

D O (3 5) , D O (2 7) a n d D 0 (1 0)

i s a s s i g n e d t o v a r i a b l e A % .

(If all above signals except D0(27)

are 1 (ON), then A%=13.)

Related commands RESET, SET

8

8-48 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE
Executes absolute movement of specified axes

Format

DRIVE [robot number] (axis number, expression)

,(axis number, expression)..., option, option

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression Motor position (mm, degrees, pulses) or point

expression

 Explanation Executes absolute movement command for the specified axis

 This command is also used in the same way for the auxiliary axes.

 • Movement type: PTP movement of specified axis.

 • Point setting method: Direct numeric value input, point definition.

 • Options: Speed setting, STOPON conditions setting, XY setting.

Movement type

 ● PTP (Point to Point) movement of specified axis:
PTP movement begins after positioning of all axes specified at <axis number> is complete (within

the tolerance range), and the command terminates when the specified axes enter the OUT

position range. When two or more axes are specified, they will reach their target positions

simultaneously.

If the next command following the DRIVE command is an executable command such as a

signal output command, that next command will start when the movement axis enters the OUT

position range. In other words, that next command starts before the axis arrives within the

target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the
OUT position range.

HALT Program stops and is reset when axis enters the OUT position range.
Therefore, axis movement also stops.

HALTALL All programs in execution stop when axis enters the OUT position range, task
1 is reset, and other tasks terminate. Therefore, the movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range.
Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop when axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

8

DRIVE 8-49

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

The WAIT ARM statement is used to execute the next command after the axis enters the

tolerance range.

P1

　　

DO(20) turns ON

DRIVE(1,P1)
WAIT ARM
DO(20)=1

DO(20) turns ON

DRIVE(1,P1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

DRIVE(1,P1)
WAIT ARM
HOLD

DRIVE(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

DRIVE command

33819-R7-00

SAMPLE

DRIVE(1,P0) ···················Axis 1 of robot 1 moves from its

current position to the position

specified by P0.

Point data setting types

 ● Direct numeric value input
The target posotion is specified directly in <expression>.

If the numeric value is an integer, this is interpreted as "pulse" units. If the numeric value is

a real number, this is interpreted as "mm/degrees" units, and each axis will move from the

0-pulse position to a pulse-converted position.

However, when using the optional XY setting, movement occurs from the Cartesian coordinate

origin position.

SAMPLE

DRIVE(1,10000) ···············Axis 1 of robot 1 moves from its

current position to the 10000 pulses

position.

DRIVE（2（(2,90.00) ············Axis 2 of robot 2 moves from its

current position to a position which

is 90° in the plus-direction from the

0-pulse position.

8

8-50 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

 ● Point definition
Point data is specified in <expressions>. The axis data specified by the <axis number> is

used. If the point expression is in "mm/degrees" units, movement for each axis occurs from the

0-pulse position to the pulse-converted position. However, when using the optional XY setting,

movement occurs from the Cartesian coordinate origin position.

SAMPLE

DRIVE(1,P1) ··················Axis 1 of robot 1 moves from its current position to

the position specified by P1.

DRIVE(4,P90) ·················· Axis 4 of robot 1 moves from its current position to the

position specified by P90 (deg) relative to the 0 pulse

position. (When axis 4 is a rotating axis.)

Option types

 ● Speed setting

Format

1. SPEED =expression

2. S =expression

 Values expression1 to 100 (units: %)

 Explanation The program's movement speed is specified as an <expression>.

 The actual speed is determined as shown below.

 • Robot's max. speed (mm/sec, or deg/sec) × automatic movement speed (%) ×

 value of expression (%)

 This option is enabled only for the specified DRIVE statement.

SAMPLE

DRIVE（2（(1,10000),S=10 ········Axis 1 of robot 2 moves from its current position to

the 10000 pulses position at 10% of the automatic

movement speed.

Format

1. DSPEED =expression

2. DS =expression

 Values expression0.01 to 100.00 (units: %)

 Explanation The axis movement speed is specified in <expression>.

 The actual speed is determined as shown below.

 • Robot's max. speed (mm/sec, or deg/sec) × value of expression (%)

 This option is enabled only for the specified DRIVE statement.

 • Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

SAMPLE

DRIVE 2 (1,10000),DS=0.1 ······Axis 1 of robot 2 moves from its current position to

the 10000 pulses position at 0.1% of the maximum speed.

NOTE
 • If point data is specified
with both integers and
real numbers in the same
statement, all values are
handled in "mm/degrees"
units.

NOTE
 • This defines the maximum
speed, and does not
g u a r a n t e e t h a t a l l
movement will occur at
specified speed.

NOTE
 • SPEED option and DSPEED
option cannot be used
together

8

DRIVE 8-51

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

 ● STOPON condition setting

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the <conditional expression>
are met. Because this is a deceleration type stop, there will be some movement
(during deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs,
and the command is terminated.

 This option is enabled only during program execution.

SAMPLE

DRIVE(1,10000),STOPON DI(20)=1

 ··········· Axis 1 of robot 1 moves from its current

position toward the "10000 pulses" position and

stops at an intermediate point if the "DI (20)

= 1" condition is met. The next step is then

executed.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and "0" indicates a FALSE

status.

 ● XY setting

Format

XY

 Explanation Moves multiple specified axes to a position specified by Cartesian coordinates.

 All the specified axes arrive at the target position at the same time.

 If all axes which can be moved by MOVE statement have been specified,

operation is identical to that which occurs when using MOVE statement.

 The following restrictions apply to this command:

 1. Axes specified by <axis number> must include the axis 1 and 2.

 2. This command can be specified at SCARA robots with X and Y- axes.

 3. Point settings must be in "mm" or "deg" units (real number setting).

SAMPLE

DRIVE(1,P100),(2,P100),(4,P100),XY

 ··········· The axis 1, 2 and 4 of robot 1 move from their

current positions to the Cartesian coordinates

position specified by P100.

MEMO

8

8-52 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI
Moves the specified robot axes in a relative manner

Format

DRIVEI [robot number] (axis number, expression),

(axis number, expression)..., option, option

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expressionTarget position (mm, deg, pulses) or point expression

 Explanation Executes relative movement, including the auxiliary axes.

 • Movement type : PTP movement of a specified axis

 • Point data setting : Direct coordinate data input, point definition

 • Options : Speed setting, STOPON conditions setting

• When DRIVEI motion to the original target position is interrupted and then restarted, the target

position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the

controller's parameters. (For details, refer to the YRCX user's/ operator's manual.)

 1) KEEP (default setting) Continues the previous (before interruption) movement. The original

target position remains unchanged.

 2) RESET Relative movement begins anew from the current position. The target

position before interruption is reset.

Movement type

 ● PTP (point-to-point) of specified axis
PTP movement begins after positioning of all axes specified at <axis number> is complete (within

the tolerance range), and the command terminates when the specified axes enter the OUT

position range. When two or more axes are specified, they will reach their target positions

simultaneously.

If the next command following the DRIVEI command is an executable command such as a

signal output command, that next command will start when the movement axis enters the OUT

position range. In other words, that next command starts before the axis arrives within the

target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the
OUT position range.

HALT Program stops and is reset when axis enters the OUT position range.
Therefore, axis movement also stops.

HALTALL
All programs in execution stop when axis enters the OUT position range,
task 1 is reset, and other tasks terminate. Therefore, the movement also
stops.

 HOLD Program temporarily stops when axis enters the OUT position range.
Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop when axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

MEMO

8

DRIVEI 8-53

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

The WAIT ARM statement are used to execute the next command after the axis enters the

tolerance range.

P1

DRIVEI command

WAIT ARM statement

DO(20) turns ON

DRIVEI(1,P1)
WAIT ARM
DO(20)=1

DO(20) turns ON

DRIVEI(1,P1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

DRIVEI(1,P1)
WAIT ARM
HOLD

DRIVEI(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

33820-R7-00

Limitless motion related cautions

• When the "limitless motion" parameter is enabled, the DRIVEI statement soft limit

check values are as follows:

 Plus-direction soft limit: 99,999,999 [pulse]

 Minus-direction soft limit: -99,999,999 [pulse]

• When using the DRIVEI statement, the above values represent the maximum movement distance

per operation.

SAMPLE

DRIVEI(1,P0) ···················· The axis 1 of robot 1 moves from its

current position to the amount of

distance specified by P0.

8

8-54 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

Point data setting types

 ● Direct numeric value input
The target position is specified in <expression>.

If the target position's numeric value is a real number, this is interpreted as a "mm/ deg" units,

and each axis will move from its current position to a pulse-converted position.

 SAMPLE

DRIVEI(1,10000) ··············From its current position, the axis 1

of robot 1 moves a distance of "+10000

pulses".

DRIVEI(4,90.00) ··············From its current position, the axis 4

of robot 1 moves +90°(when axis 4 is a

rotating axis).

 ● Point definition
Point data is specified in <expression>. The axis data specified by the <axis number> is used.

From its current position, the axis moves the distance specified by the point in a relative

manner.

If the point expression is in "mm/ degrees" units, movement for each axis occurs from the

0-pulse position to the pulse-converted position.

SAMPLE

DRIVEI(1,P1) ·················The axis 1 of robot 1 moves from its

current position the distance specified

by P1.

DRIVEI(4,P90) ·················The axis 4 of robot 1 moves from its

current position the number of degrees

specified by P90 (when axis 4 is a

rotating axis).

NOTE
 • If point data is specified
with both integers and
real numbers in the same
statement, all values are
handled in "mm/degrees"
units.

8

DRIVEI 8-55

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

Option types

 ● Speed setting

Format

1. SPEED=expression

2. S=expression

 Values expression1 to 100 (units: %)

 Explanation The program's movement speed is specified by the <expression>.

 The actual speed is as follows:

 • Robot's max. speed (mm/sec, or deg/sec) × automatic movement speed (%) ×

program movement speed (%)

 This option is enabled only for the specified DRIVEI statement.

SAMPLE

DRIVEI(1,10000),S=10 ··········The axis 1 of robot 1 moves from

its current position to the +10000

pulses position at 10% of the program

movement speed.

Format

1. DSPEED=expression

2. DS=expression

 Values expression0.01 to 100.00 (units: %)

 Explanation The axis movement speed is specified as an <expression>.

 The actual speed is determined as shown below.

 • Robot's max. speed (mm/sec, or deg/sec) × axis movement speed (%)

 This option is enabled only for the specified DRIVEI statement.

 • Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

SAMPLE

DRIVEI(1,10000),DS=0.1 ········The axis 1 of robot 1 moves from its

current position to the +10000 pulses

position at 0.1% of the maximum speed.

NOTE
 • This defines the maximum
speed, and does not
g u a r a n t e e t h a t a l l
movement will occur at
specified speed.

NOTE
 • SPEED option and DSPEED
option cannot be used
together.

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-56 Chapter 8 Robot Language Lists

8

8-56 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

 ● STOPON condition setting

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the <conditional expression>

are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are satisfied.

 If the conditions are already satisfied before movement begins, no movement

occurs, and the command is terminated.

 This option is enabled only by program execution.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than "0" indicates a TRUE status, and "0" indicates a FALSE

status.

SAMPLE

DRIVEI(1,10000),STOPON DI(20)=1

 ··········· Axis 1 of robot 1 moves from its current

position toward the "+10000 pulses" position

and stops at an intermediate point if the "DI

(20) = 1" condition become satisfied. The next

step is then executed.

MEMO

8

END SELECT 8-57

A

B

C

D

E

F

G

H

I

J

K

L

M

 31 END SELECT
Ends the SELECT CASE statement

Format

SELECT CASE expression

 CASE expression's list 1

 command block 1

 CASE expression's list 2

 command block 2

 :

 CASE ELSE

 command block n

END SELECT

 Explanation Directly ends the SELECT CASE command block.

 For details, refer to section "104 SELECT CASE to END SELECT".

SAMPLE

WHILE -1

SELECT CASE DI3()

 CASE 1,2,3

 CALL *EXEC(1,10)

 CASE 4,5,6,7,8,9,10

 CALL *EXEC(11,20)

 CASE ELSE

 CALL *EXEC(21,30)

END SELECT

WEND

HALT

Related commands SELECT CASE

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-58 Chapter 8 Robot Language Lists

 32 END SUB
Ends the sub-procedure definition

Format

SUB label (dummy argument, dummy argument…)

 command block

END SUB

 Explanation Ends the sub-procedure definition which begins at the SUB statement.

 For details, refer to section "125 SUB to END SUB".

SAMPLE 1

 I=1

 CALL *TEST

 PRINT I

 HALT

 ’SUB ROUTINE: TEST

 SUB *TEST

 I=50

 END SUB

Related commands CALL, EXIT SUB, SUB to END SUB

8

ERR / ERL 8-59

A

B

C

D

E

F

G

H

I

J

K

L

M

 33 ERR / ERL
Acquires the error code / error line number

Format

ERR(task number)

ERL(task number)

 Values task number1 to 4

 Explanation Variables ERR and ERL are used in error processing routines specified by the ON

ERROR GOTO statement.

 ERR of the task specified by the <task number> gives the error code of the error that

has occurred and ERL gives the line number in which the error occurred.

SAMPLE 1

IF ERR 1 <> &H604 THEN HALT

IF ERL 1 =20 THEN RESUME NEXT

Related commands ON ERROR GOTO, RESUME

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-60 Chapter 8 Robot Language Lists

 34 ETHSTS
Acquires the Ethernet port status

Format

ETHSTS

 Explanation Acquires the Ethernet port status.
-2

-1

 0........

 1........

 2........

Ethernet port is not opened yet.

LAN cable is not connected.

The connection is not established.

The connection is established.

The connection is established / the data is stored in the reception buffer.

SAMPLE

A=ETHSTS ····················· A s s i g n s t h e t h e E t h e r n e t p o r t

status to the variable A

8

EXIT FOR 8-61

A

B

C

D

E

F

G

H

I

J

K

L

M

 35 EXIT FOR
Terminates the FOR to NEXT statement loop

Format

EXIT FOR

 Explanation Terminates the FOR to NEXT statement loop, then jumps to the command which

follows the NEXT statement.

 This statement is valid only between the FOR to NEXT statements.

• The FOR to NEXT statement loop will end when the FOR statement condition is satisfied or

when the EXIT FOR statement is executed. A "5.212: Stack overflow" error, etc., will occur if

another statement such as GOTO is used to jump out of the loop.

SAMPLE

*ST:

WAIT DI(20)=1

FOR A%=101 TO 109

 MOVE P,P100,Z=0

 DO(20)=1

 MOVE P,P[A%],Z=0

 DO(20)=0

 IF DI(20)=0 THEN EXIT FOR

NEXT A%

GOTO *ST

HALT

Related commands FOR, NEXT

MEMO

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-62 Chapter 8 Robot Language Lists

 36 EXIT SUB
Terminates the sub-procedure defined by the SUB to END SUB statement

Format

EXIT SUB

 Explanation The EXIT SUB statement terminates the sub-procedure defined by the SUB to END

SUB statements, then jumps to the next command in the CALL statement that called

up the sub-procedure.

 This statement is valid only within the sub-procedure defined by the SUB to END

SUB statements.

• To end the sub-procedure defined by the SUB to END SUB statements, use the END SUB

statement or EXIT SUB statement. A "5.212: Stack overflow" error, etc., will occur if another

statement such as GOTO is used to jump out of the loop.

SAMPLE

’MAIN ROUTINE

CALL *SORT2(REF X%,REF Y%)

HALT

’SUB ROUTINE: SORT

SUB *SORT2(X%, Y%)

 IF X%>=Y% THEN EXIT SUB

 TMP%=Y%

 Y%=X%

 X%=TMP%

END SUB

Related commands CALL, SUB to END SUB, END SUB

MEMO

8

EXIT TASK 8-63

A

B

C

D

E

F

G

H

I

J

K

L

M

 37 EXIT TASK
Terminates its own task which is in progress

Format

EXIT TASK

 Explanation Terminates its own task which is currently being executed.

SAMPLE

’TASK1 ROUTINE

*ST:

 MO(20)=0

 START <SUB_PGM>,T2

 MOVE P,P0,P1

 WAIT MO(20)=1

 GOTO *ST

HALTALL

Program name:SUB_PGM

’TASK2 ROUTINE

*SUBTASK2:

 P100=JTOXY(WHERE)

 IF LOCZ(P100)>=100.000 THEN

 MO(20)=1

 EXIT TASK

 ENDIF

 DELAY 100

GOTO *SUBPTASK2

EXIT TASK

Related commands CUT, RESTART, START, SUSPEND, CHGPRI

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-64 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-64 Chapter 8 Robot Language Lists

 38 FOR to NEXT
Performs loop processing until the variable exceeds the specified value

Format

FOR control variable = start value TO end value STEP step

 command block

NEXT control variable

 Explanation These statements repeatedly execute commands between the FOR to NEXT

statements for the <start value> to <end value> number of times, while changing the

<control variable> value in steps specified by <STEP>.

 If <STEP> is omitted, its value becomes "1".

 The <STEP> value may be either positive or negative.

 The <control variable> must be a numeric <simple variable> or <array variable>.

 The FOR and NEXT statements are always used as a set.

SAMPLE

'CYCLE WITH CYCLE NUMBER OUTPUT TO DISPLAY

FOR A=1 TO 10

 MOVE P,P0

 MOVE P,P1

 MOVE P,P2

 PRINT"CYCLE NUMBER=";A

NEXT A

HALT

Related commands EXIT FOR

8

GEPSTS 8-65

A

B

C

D

E

F

G

H

I

J

K

L

M

 39 GEPSTS
Acquires the General Ethernet Port status

Format

GEPSTS(General Ethernet Port number)

 Values General Ethernet Port number 0 to 7

 Explanation Acquires the specified General Ethernet port status.

 -2 The specified General Ethernet port is not opened yet.

 -1 LAN cable is not connected.

 0 The connection is not established.

 1 The connection is established.

 2 The connection is established / the data is stored in the reception buffer.

SAMPLE

OPEN GP1 ····················· Opens the port which is specified at

the General Ethernet port 1

IF GEPSTS(1) > 0 THEN ··········· C o n f i r m s i f t h e c o n n e c t i o n i s

established.

 SEND “ABC” TO GP1 ············ Sends the character string "123".

 IF GEPSTS(1)=2 THEN ·········· Confirms if the data is stored in the

reception buffer.

 SEND GP1 TO RET$ ········· Receives the data and assigns the

received to the variable RET$.

 ENDIF

ENDIF

CLOSE GP1 ····················· Closes the port which is specified at

the General Ethernet port 1.

HALT

Related commands OPEN, CLOSE, SEND, SETGEP

8

A

B

C

D

E

F

G

H

I

J

K

L

M

8-66 Chapter 8 Robot Language Lists

 40 GOSUB to RETURN
Jumps to a subroutine

Format

GOSUB label * GOSUB can also be expressed as "GO SUB".

 :

label:

 :

RETURN

 Explanation Jumps to the <label> subroutine specified by the GOSUB statement.

 A RETURN statement within the subroutine causes a jump to the next line of the

GOSUB statement.

• The GOSUB statement can be used up to 120 times in succession. Note that this number of

times is reduced if commands containing a stack such as an FOR statement or CALL statement

are used.

• When a jump to a subroutine was made with the GOSUB statement, always use the RETURN

statement to end the subroutine. If another statement such as GOTO is used to jump out of the

subroutine, an error such as "5.212: Stack overflow" may occur.

SAMPLE

*ST:

MOVE P,P0

GOSUB *CLOSEHAND

MOVE P,P1

GOSUB *OPENHAND

GOTO *ST

HALT

’SUB ROUTINE

*CLOSEHAND:

 DO(20) = 1

RETURN

*OPENHAND:

 DO(20) = 0

RETURN

Related commands RETURN

MEMO

8

GOTO 8-67

A

B

C

D

E

F

G

H

I

J

K

L

M

 41 GOTO
Executes an unconditional jump to the specified line

Format

GOTO label * GOTO can also be expressed as "GO TO".

 Explanation Executes an unconditional jump to the line specified by <label>.

SAMPLE

 ’MAIN ROUTINE

 *ST:

 MOVE P,P0,P1

 IF DI(20) = 1 THEN

 GOTO *FIN

 ENDIF

 GOTO *ST

 *FIN:

 HALT

8

8-68 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 42 HALT
Stops the program and performs a reset

Format

HALT expression

 character string

 Explanation Stops the program and resets it. If restarted after a HALT, the program runs from its

beginning.

 If an <expression> or a <character string> is written, the operation result of

<expression> or the contents of <character string> are displayed on the programming

box screen, respectively

• Variables are not reset by execution of HALT statement. HALTALL is available to reset variables.

• HALT is effective only in the executed task. The programs executed in other tasks continue

execution.

SAMPLE

 ’MAIN ROUTINE

 *ST:

 MOVE P,P0,P1

 IF DI(20) = 1 THEN

 GOTO *FIN

 ENDIF

 GOTO *ST

 *FIN:

 HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's

command is executed when the axis enters the OUT position range.

Therefore, if a HALT command exists immediately after a PTP movement command, that HALT

command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)

command, the next command is executed immediately after movement starts. Therefore, if a HALT

command exists immediately after the interpolation movement command during MOVE (L or C)

command with CONT options, a HALT command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute

the HALT command after the axis arrives within the target position tolerance range.

　　

HALT execution

DRIVE(1,P1)
WAIT ARM
HALT

DRIVE(1,P1)
HALT

Tolerance
OUT position

Target position

HALT execution

HALT command

33821-R7-00

MEMO

8

HALTALL 8-69

A

B

C

D

E

F

G

H

I

J

K

L

M

 43 HALTALL
Stops all programs and performs reset

Format

HALTALL expression

 character string

 Explanation Stops and resets all programs. Dynamic variables, array variables, output variables

are also rest.

 If a program is restarted after a HALTALL, the program runs from its beginning of the

main program or of the last program executed at task 1.

 If an <expression> or a <character string> is written, the calculation result of

<expression> or the contents of <character string> are displayed on the programming

box screen, respectively (if variable is written in an <expression>, the previous value

before clearing is displayed).

Output variables (DO/SO/MO/LO/TO/SOW) are reset under the condition as shown below.

• IO parameter "DO output at Program reset" is "IO_RESET".

• Sequence program is in execution and the sequence program execution flag is enabled.

SAMPLE

 ’MAIN ROUTINE

 *ST:

 MOVE P,P0,P1

 IF DI(20) = 1 THEN

 GOTO *FIN

 ENDIF

 GOTO *ST

 *FIN:

 HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's

command is executed when the axis enters the OUT position range.

Therefore, if a HALTALL command exists immediately after a PTP movement command, that

HALTALL command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C) command,

the next command is executed immediately after movement starts. Therefore, if a HALTALL command

exists immediately after the interpolation movement command during MOVE (L or C) command with

CONT options, a HALTALL command is executed immediately after starting movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute

the HALTALL command after the axis arrives within the target position tolerance range.

　　

HALTALL execution

DRIVE(1,P1)
WAIT ARM
HALTALL

DRIVE(1,P1)
HALTALL

Tolerance
OUT position

Target position

HALTALL execution

HALTALL command

33701-R9-00

MEMO

8

8-70 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 44 HAND
Defines the hand

Format

Definition statement:

 HAND[robot number] Hn = 1st parameter 2nd parameter 3rd parameter R

Selection statement:

 CHANGE[robot number] Hn

 Values robot number1 to 4

 n: hand number0 to 31

 R: Indicates whether a hand is attached to the R-axis.

 Explanation The HAND statement only defines the hand. To actually change hands, the CHANGE

statement must be used.

 For CHANGE statement details, refer to section "12 CHANGE".

 If "R" is specified, the hands that are offset from the R-axis rotating center are selected.

• If a power OFF occurs during execution of the hand definition statement, the "9.707 Hand data

destroyed" error may occur.

• If specifying the hand data that was defined by specifying other robots in the CHANGE

statement, “6.258: Illegal robot no” error may occur.

44.1 For SCARA Robots

1. When the <4th parameter> "R" is not specified

Hands installed on the second arm tip are selected (see below).

1st parameter Number of offset pulses between the standard second arm position

and the virtual second arm position of hand "n". "+" indicates the

counterclockwise direction [pulse].

2nd parameter Difference between the hand "n" virtual second arm length and the

standard second arm length. [mm]

3rd parameter Z-axis offset value for hand "n". [mm]

Hand 1 Hand 2

20.00mm

15
0.

00
m

m

Sta
nd

ar
d

2n
d

ar
m

-5000 pulses

33803-R9-00

MEMO

8

HAND 8-71

A

B

C

D

E

F

G

H

I

J

K

L

M

 44 HAND

SAMPLE

HAND H1= 0 150.000 0.0000

HAND H2= -5000 20.000 0.000

P1= 150.000 300.000 0.000 0.000 0.000 0.000

CHANGE H2 ····················· Hand of robot 1 changes to hand 2.

MOVE P,P1 ····················· Tip of hand 2 of robot 1 moves to P1.

CHANGE H1 ····················· Hand of robot 1 changes to hand 1.

MOVE P,P1 ····················· Tip of hand 1 of robot 1 moves to P1.

HALT

　　

Y

X

Hand 2

(150.00, 300.00)
Hand 1

X

Y

(150.00, 300.00)

SAMPLE:HAND

33802-R7-00

8

8-72 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 44 HAND

2. When the <4th parameter> "R" is specified

The hands that are offset from the R-axis rotating center are selected (see below).

1st parameter When the current position of R-axis is 0.00, this parameter shows

the angle of hand "n" from the X-axis plus direction in a Cartesian

coordinate system. ("+"indicates the counterclockwise direction.)

[degree]

2nd parameter Length of hand "n". [mm] (>0)

3rd parameter Z-axis offset amount for hand "n". [mm]

Standard 2nd arm 150.00mm

100.00mm Hand 2

Hand 1

X

Y

-90.00 deg.

33804-R9-00

SAMPLE

HAND H1= 0.00 150.0 0.0 R

HAND H2= -90.00 100.00 0.0 R

P1= 150.00 300.00 0.00 0.00 0.00 0.00

CHANGE H1 ····················· Hand of robot 1 changes to hand 1.

MOVE P,P1 ····················· Tip of hand 1 moves to P1.

CHANGE H2 ····················· Hand of robot 1 changes to hand 2.

MOVE P,P1 ····················· Tip of hand 2 moves to P1.

HALT

SAMPLE:HAND

Y

X X

Y

Hand 1

(150.00, 300.00)

Hand 2

(150.00, 300.00)

33804-R7-00

8

HOLD 8-73

A

B

C

D

E

F

G

H

I

J

K

L

M

 45 HOLD
Temporarily stops the program

Format

HOLD expression

 character string

 Explanation Temporarily stops the program. When restarted, processing resumes from the next

line after the HOLD statement. If an <expression> or <character string> is written in

the statement, the contents of the <expression> or <character string> display on the

programming box screen.

• HOLD is effective only in the task executed. The programs executed in other tasks continue

execution.

SAMPLE

’MAIN ROUTINE

*ST:

 MOVE P,P0,P1

 IF DI(20)=1 THEN

 HOLD "PROGRAM STOP"

 ENDIF

GOTO *ST

HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's

command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLD command exists immediately after a PTP movement command, that HOLD

command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)

command, the next command is executed immediately after movement starts. Therefore, if a

HOLD command exists immediately after the interpolation movement command during MOVE

(L or C) command with CONT options, a HOLD command is executed immediately after starting

movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute

the HOLD command after the axis arrives within the target position tolerance range.

HOLD command

HOLD execution

DRIVE(1,P1)
WAIT ARM
HOLD

DRIVE(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution

33822-R7-00

MEMO

8

8-74 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 46 HOLDALL
Temporality stops all programs

Format

HOLD expression

 character string

 Explanation Temporality stops all programs. When restarted, the program that has executed

HOLDALL is executed from the next line after the statement, and other programs

are resumed from the line that has interrupted execution. If an <expression> or

<character sting> is written in the statement, the contents of <expression> or

<character string> displays on the programming box screen.

SAMPLE

’MAIN ROUTINE

*ST:

 MOVE P,P0,P1

 IF DI(20)=1 THEN

 HOLD "PROGRAM STOP"

 ENDIF

GOTO *ST

HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's

command is executed when the axis enters the effective OUT position range.

Therefore, if a HOLDALL command exists immediately after a PTP movement command, that

HOLDALL command is executed before the axis arrives in the target position tolerance range.

Likewise, when specifying CONT options in interpolation movement during MOVE (L or C)

command, the next command is executed immediately after movement starts. Therefore, if a

HOLDALL command exists immediately after the interpolation movement command during MOVE (L

or C) command with CONT options, a HOLDALL command is executed immediately after starting

movement.

In either of the above cases, use the WAIT ARM command as shown below if desiring to execute

the HOLDALL command after the axis arrives within the target position tolerance range.

HOLDALL command

HOLDALL execution

DRIVE(1,P1)
WAIT ARM
HOLDALL

DRIVE(1,P1)
HOLDALL

Tolerance
OUT position

Target position

HOLDALL execution

33702-R9-00

8

IF 8-75

A

B

C

D

E

F

G

H

I

J

K

L

M

 47 IF
Evaluates a conditional expression value, and executes the command in accordance with the conditions

47.1 Simple IF statement

Format

IF conditional expression THEN label 1 ELSE label 2

 command statement 1 command statement 2

 Explanation If the condition specified by the <conditional expression> is met (true), processing

jumps either to the <label 1> which follows THEN, or to the next line after

<command statement 1> is executed.

 If the condition specified by the <conditional expression> is not met (false), the

following processing occurs:

1. Processing either jumps to the <label 2> specified after the ELSE statement, or to

the next line after <command statement 2> is executed.

2. If nothing is specified after the ELSE statement, no action is taken, and processing

simply jumps to the next line.

• When the conditional expression used to designate the IF statement condition is a numeric

expression, an expression value other than "0" indicates a TRUE status, and "0" indicates a

FALSE status.

SAMPLE

’MAIN ROUTINE

*ST:

 MOVE P,P0,P1

 IF DI(20)=1 THEN *L1 ········· If DI (20) is "1", a jump to *L1

occurs.

 DO(20)=1

 DELAY 100

*L1:

 IF DI(21)=1 THEN *ST ELSE *FIN

 ····················· If DI (21) is "1", a jump to *ST

occurs. If other than "1", a jump to

*FIN occurs.

*FIN:

HALT

MEMO

8

8-76 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

8

8-76 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 47 IF

47.2 Block IF statement

Format

IF conditional expression 1 THEN

 command block 1

ELSEIF conditional expression 2 THEN

 command block 2

ELSE

 command block n

ENDIF

 Explanation If the condition specified by <conditional expression 1> is met (true), this statement

executes the instructions specified in <command block 1>, then jumps to the next

line after ENDIF.

 When an ELSEIF statement is present and the condition specified by <conditional

expression 2> is met (true), the instructions specified in <command block 2> are

executed.

 If all the conditions specified by the conditional expression are not met (false),

<command block n> is executed.

• When the conditional expression used to designate the IF statement condition is a numeric

expression, an expression value other than “0” indicates a TRUE status, and "0" indicates a

FALSE status.

SAMPLE

’MAIN ROUTINE

*ST:

 MOVE P,P0,P1

 IF DI(21,20)=1 THEN

 DO(20)= 1

 DELAY 100

 WAIT DI(20)=0

 ELSEIF DI(21,20)=2 THEN

 DELAY 100

 ELSE

 GOTO *FIN

 ENDIF

GOTO *ST

*FIN:

HALT

MEMO

A

B

C

D

E

F

G

H

I

J

K

L

M

8

INPUT 8-77

 48 INPUT
Assigns a value to a variable specified from the programming box

Format

INPUT prompt statement ; variable , variable ,...

 , point variable point variable

 shift variable shift variable

 Explanation Assigns a value to the variable specified from the programming box.

 The input definitions are as follows:

1. When two or more variables are specified by separating them with a comma (,),

the specified input data items must also be separated with a comma (,).

2. At the <prompt statement>, enter a character string enclosed in double quotation

marks (") that will appear as a message requiring data input. When a semicolon (

;) is entered following the <prompt statement>, a question mark (?) and a space

will appear at the end of the message. When a comma (,) is entered, nothing will

be displayed following the message.

3. When the <prompt statement> is omitted, only a question mark (?) and a space

will be displayed.

4. The input data type must match the type of the corresponding variables. When

data is input to a point variable or shift variable, insufficient elements are set to

"0".

5. If only the ENTER key is pressed without making any entry, the program interprets

this as a "0" or "null string" input. However, if specifying two or more variables, a

comma (,) must be used to separate them.

6. If the specified variable is a character type and a significant space is to be entered

before and after a comma (,), double quotation mark (") or character string, the

character string must be enclosed in double quotation marks ("). Note that in this

case, you must enter two double quotation marks in succession so that they will

be identified as a double quotation mark input.

Input Contents of A$
ABC ABC
(space)ABC(space) ABC: space is not entered before and after ABC
" ABC " ABC : space is entered before and after ABC

ABC,XYZ ABC is entered, and XYZ is entered when the next INPUT
statement is executed.

"ABC,XYZ" ABC,XYZ
"""ABC""" "ABC"

7. Pressing the ESC key skips this command.

• If the variable and the value to be assigned are different types, the specified message displays,

and a “waiting for input” status is established.

• When assigning alphanumeric characters to a character variable, it is not necessary to enclose

the character string in double quotation marks (").

• When using INPUT statement, the value is assigned to the variable from the channel specified

in cotroller parameter "INPUT/PRINT using channel".

MEMO

8

8-78 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 48 INPUT

SAMPLE

INPUT A ····················· Converts the enterered character

string to a real number and assigns to

variable A!.

INPUT "INPUT POINT NUMBER";A1

 ····················· Displays INPUT POINT NUMBER on a prompt

of programming box, etc. and converts

the enterered character string to a

real number and assigns to variable A!.

INPUT "INPUT STRING",B$(0),B$(1)

 ····················· Displays INPUT STRING on a prompt of

programming box, etc. If commas are

contained in the enterered character

string, the first character string is

assigned to 0 element of the array

variable B$ and the second character

string is assigned to its 1 element.

INPUT P100 ····················· Assigns the enterered character string

to P100.

HALT

A

B

C

D

E

F

G

H

I

J

K

L

M

8

INT 8-79

 49 INT
Truncates decimal fractions

Format

INT (expression)

 Explanation This function acquires an integer value with decimal fractions truncated. The

maximum integer value which does not exceed the <expression> value is acquired.

SAMPLE

A=INT(A(0))

B=INT(-1. 233) ·················· "-2" is assigned to B.

8

8-80 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 50 JTOXY
Performs axis unit system conversions (pulse → mm)

Format

JTOXY [robot number] (point expression)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Converts the joint coordinate data (unit: pulse) specified by the <point expression>

into Cartesian coordinate data (unit: mm, degree) of the robot specified by the <robot

number>.

SAMPLE

P10=JTOXY(WHERE) ················ Current position data of robot 1 is

converted to Cartesian coordinate data

and assigned to P10.

Related commands XYTOJ

A

B

C

D

E

F

G

H

I

J

K

L

M

8

LEFT$ 8-81

 51 LEFT$
Extracts character strings from the left end

Format

LEFT$ (<character string expression> , <expression>)

 Values expression0 to 255

 Explanation This function extracts a character string with the digits specified by the <expression>

from the left end of the character string specified by <character string expression>.

 The <expression> value must be between 0 and 255, otherwise an error will occur.

 If the <expression> value is 0, then extracted character string will be a null string

(empty character string).

 If the <expression> value has more characters than the <character string expression>,

extracted character string will become the same as the <character string expression>.

SAMPLE

B$=LEFT$(A$,4) ·················· 4 characters from the left end of A$

are assigned to B$.

Related commands MID$, RIGHT$

8

8-82 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 52 LEFTY
Sets the SCARA robot hand system as a left-handed system

Format

LEFTY [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Specifies the robot as a left-handed system.

 This statement only specifies the hand system, and does not move the robot. If

executed while the robot arm is moving, execution waits until movement is complete

(positioned within tolerance range).

SAMPLE

RIGHTY ····················· Specifies the hand system of robot 1 as

a right-handed system.

MOVE P,P1 ····················· (1)

LEFTY ····················· Specifies the hand system of robot 1 as

a left-handed system.

MOVE P,P1 ····················· (2)

RIGHTY ····················· Specifies the hand system of robot 1 as

a right-handed system.

HALT

SAMPLE:LEFTY/RIGHTY

P1

(1)(2)

Left-handed system Right-handed system

SCARA robot

33809-R7-00

Related commands RIGHTY

8

LEN 8-83

A

B

C

D

E

F

G

H

I

J

K

L

M

 53 LEN
Acquires a character string length

Format

LEN(character string expression)

 Explanation Returns the character string length of the <character string expression> as a number

of bytes.

SAMPLE

A$=“OMRON”

B$=“OMRON MOTOR”

C$=“OMRON CO., LTD.”

PRINT LEN(A$) ··················· Indicates “6”.

PRINT LEN(B$) ··················· Indicates “12”.

PRINT LEN(C$) ··················· Indicates “16”.

8

8-84 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 54 LET
Assigns values to variables

Format

 LET arithmetic assignment statement

 character string assignment statement

 point assignment statement

 shift assignment statement

 Explanation Executes the specified assignment statement. The right-side value is assigned to the

left side. An assignment statement can also be directly written to the program without

using a LET statement.

• If the controller power is turned off during execution of a <point assignment statement> or

<shift assignment statement>, a memory-related error such as the "9.702: Point data destroyed"

or the "9.706: Shift data destroyed" may occur.

1. Arithmetic assignment statement

Format

 LET integer variable =expression

 real variable

 parallel output variable

 internal output variable

 arm lock output variable

 timer output variable

 serial output variable

 serial word output variable

 serial double-word output variable

 Values expressionVariables (except character string variables, point

data variables, shift variables)

Function

Numeric value

 Explanation The expression value is assigned to the left-side variable.

SAMPLE

A!=B!+1

B%(1,2,3)=INT(10.88)

DO2()=&B00101101

MO(21,20)=2

LO(00)=1

TO(01)=0

SO12()=255

MEMO

8

LET 8-85

A

B

C

D

E

F

G

H

I

J

K

L

M

 54 LET

2. Character string assignment statement

Format

 LET character string variable = character string expression

 Explanation The <character string expression> value is assigned to the character string variable.

 Only the plus (+) arithmetic operator can be used in the <character string

expression>. Other arithmetic operators and parentheses cannot be used.

SAMPLE

A$ ="OMRON"

B$ ="ROBOT"

D$ = A$ + "-" + B$

Execution result: OMRON-ROBOT

• The "+" arithmetic operator is used to link character strings.

3. Point assignment statement

Format

 LET point variable = point expression

 Explanation Assigns <point expression> values to point variables.

Only 4 arithmetic operators (+, -, *, /) can be used in the <point expression>.

 Multiplication and division are performed only for constant or variable arithmetic

operations.

• Addition / Subtraction

• Multiplication / Division

Addition / subtraction is performed for each element

of each axis.

Multiplication / division by a constant or variable is

performed for each element of each axis.

Multiplication results vary according to the point data type.

• For "pulse" units

• For "mm" units

Assigned after being rounded to an integer.

Assigned a real number after being rounded off to

two decimal places.

MEMO

8

8-86 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 54 LET

SAMPLE

 P1 =P10 ····················Point 10 is assigned to P1.

 P20=P20+P5 ·················Each element of point 20 and point 5

is summed and assigned to P20.

 P30=P30-P3 ·················Each element of point 3 is subtracted

from point 30 and assigned to P30.

 P80=P70*4 ··················Each element of point 70 is multiplied

by 4 and assigned to P80.

 P60=P5/3 ···················Each element of point 5 is divided by

3 and assigned to P60.

• Multiplication & division examples are shown below.

 • Permissible examples P15 * 5, P[E]/A, etc.

 • Prohibited examples P10 * P11, 3/P10, etc.

4. Shift assignment statement

Format

 LET shift variable = shift expression

 Explanation Assigns <shift expression> values to shift variables.

 Only shift elements can be used in <shift expressions>, and only addition and

subtraction arithmetic operators are permitted. Parentheses cannot be used.

 • Addition/subtraction Addition/subtraction is performed for each element

of each axis.

SAMPLE

 S1=S0 "shift 0" is assigned to "shift 1".

 S2=S1+S0 ···················Each element of "shift 1" and "shift 0"

is summed and assigned to "shift 2".

• Examples of <shift expression> addition/subtraction:

 • Permissible examples S1 + S2

 • Prohibited examples S1 + 3

MEMO

MEMO

8

LO 8-87

A

B

C

D

E

F

G

H

I

J

K

L

M

 55 LO
Arm lock output or acquires the output status

Format

1. LET LOm (b,···,b) =expression

2. LET LO (mb,···,mb) =expression

 Values m: port number

b: bit definition

expression

0, 1

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

Integer value (If real number is specified, rounds to an

integer.)

Bits beyond the number of bit whom a assignment

destination is required are ignored. (If the port number

is specified, the lower 8 bits are valid. if the number of

bit specified on bit definition is 1 to 8, the lower 1 to 8

bit corresponding to the bits specified on the left side are

valid.)

 Explanation This statement outputs the specified value to the LO port to either prohibit or allow

axis movement.

 LO(00) to LO(07) correspond to axes 1 to 8, LO(10) to LO(17) correspond to axes 9

to 16, respectively. An arm lock ON status occurs at axes where bits are set, and axis

movement is prohibited.

• This statement is valid at axes where movement is started.

SAMPLE

LO0()=&B00001010 ················ Prohibits movement at axes 2 and 4.

LO0(2,1)=&B10 ··················· Prohibits movement at axis 3, Permits

movement at axis 2.

REFERENCE

 • For details regarding bit
definitions, see Chapter 3
"10 Bit Settings".

MEMO

8

8-88 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 55 LO

Functions

Format

 LET LOm (b,···,b)

 LET LO (mb,···,mb)

 Values m: port number

b: bit definition

0 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Acquires the output status of the specified LO port.

 LO(00) to LO(07) correspond to axes 1 to 8, LO(10) to LO(17) correspond to axes 9

to 16, respectively. An arm lock ON status occurs at axes where bits are set, and axis

movement is prohibited.

SAMPLE

A%= LO0() ····················· Output status of ports DO(07) to LO(00)

is assigned to variable A%.

A%= LO0(6, 5, 1) ················ Output status of LO(06), LO(05) and

LO(01) is assigned to variable A%.

(If all above signals are 1(ON), then

A%=7.)

A%=LO(17,15,00) ················· Output status of L0(17), LO(15) and

L0(00) is assigned to variable A%.

(If all above signals except L0(15)

are 1 (ON), then A%=5.)

Related commands RESET, SET

8

LOCx 8-89

A

B

C

D

E

F

G

H

I

J

K

L

M

 56 LOCx
Specifies/acquires point data for a specified axis or shift data for a specified element

Format

1. LOCx (point expression) =expression

2. LOCx (shift expression) =expression

 Values Format 1: x 1 to 6 (axis setting)

F (hand system flag setting)

F1 (first arm rotation information)

F2 (second arm rotation information)

Format 2: x

expression

 1 to 4 (element setting)

Axis or element setting

Hand system flag setting

First / second arm rotation

information(*1)

coordinate value

1 (right-handed system)

2 (left-handed system)

0 (no setting)

0, 1, -1

*1: For details regarding the first arm and the second arm rotation information, refer

to Chapter 4 "3. Point data format".

 Explanation Format 1: Changes the value of the point data specified axis, the hand system flag,

and the first arm and the second arm rotation information.

 Format 2: Changes the value of a specified element from the shift data value.

• Points where data is to be changed must be registered in advance. An error will occur if a value

change is attempted at an unregistered point (where there are no coordinate values).
MEMO

8

8-90 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 56 LOCx

Functions

Format

1. LOCx (point expression)

2. LOCx (shift expression)

 Values Format 1: x 1 to 6 (axis setting)

F (hand system flag setting)

F1 (first arm rotation information)

F2 (second arm rotation information)

 Explanation Format 1: Acquires the value of the point data specified axis, the hand system flag,

and the first arm and the second arm rotation information.

 Format 2: Acquires a specified axis element from the shift data.

SAMPLE

LOC1(P10)=A(1) ·················· Axis 1 data of P10 is changed to the

array A (1) value.

LOC2(S1)=B ····················· Axis 2 data of S1 is changed to the B

value.

A(1)=LOC1(P10) ·················· Axis 1 data of P10 is assigned to array

A (1).

B(2)=LOC1(S1) ··················· The first element (X direction) of S1

is assigned to array B (2).

Related commands Point variable, shift variable

8

LSHIFT 8-91

A

B

C

D

E

F

G

H

I

J

K

L

M

 57 LSHIFT
Left-shifts a bit

Format

LSHIFT (expression 1, expression 2)

 Explanation Shifts the <expression 1> bit value to the left by the amount of <expression 2>.

Spaces left blank by the shift are filled with zeros (0).

SAMPLE

A=LSHIFT(&B10111011,2) ·········· The 2-bit-left-shifted &B10111011 value

(&B11101100) is assigned to A.

Related commands RSHIFT

8

8-92 Chapter 8 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MCHREF
Acquires the machine reference value (axes: sensor method / stroke-end method)

Format

MCHREF [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation This function returns the return-to-origin or absolute-search machine reference value

(unit:%) of axes specified by an <axis number>.

 This function is valid only for axes whose return-to-origin method is set as "Sensor" or

"Stroke-end".

SAMPLE

A=MCHREF(1) ····················· The machine reference of axis 1 of

robot 1 is assigned to variable A.

8

MID$ 8-93

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MID$
Acquires a character string from a specified position

Format

MID$ (character string expression, expression 1, expression 2)

 Values expression 11 to 255

 expression 20 to 255

 Explanation This function extracts a character string of a desired length (number of characters)

from the character string specified by <character string expression>. <expression 1>

specifies the character where the extraction is to begin, and <expression 2> specifies

the number of characters to be extracted.

 An error will occur if the <expression 1> and <expression 2> values violate the

permissible value ranges.

 If <expression 2> is omitted, or if the number of characters to the right of the

character of <expression 1> is less than the value of <expression 2>, then all

characters to the right of the character specified by <expression 1> will be extracted.

 If <expression 1> is longer than the character string, the exracted value will be a null

string (empty character string).

SAMPLE

B$=MID$(A$,2,4) ················· The 2nd to 4th characters (up to the 5th

characters) of A$ are assigned to B$.

Related commands LEFT$, RIGHT$

8-94 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 60 MO
Outputs a specified value to the MO port or acquires the output status

Format

1. LET MOm(b,···,b) =expression

2. LET MO(mb,···,mb) =expression

 Values m: port number

b: bit definition

expression

2 to 7, 10 to 17, 20 to 27, 30 to 37

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

Integer value (If real number is specified, rounds to an

integer.)

Bits beyond the number of bit whom a assignment

destination is required are ignored. (If the port number is

specified, the lower 8 bits are valid. if the number of bit

specified on bit definition is 1 to 8, the lower 1 to 8 bit

corresponding to the bits specified on the left side are valid.)

 Explanation Outputs a specified value to the MO port.

 In order to maintain the origin sensor status and axis HOLD status at each axis, ports

"30" to "37" cannot be used as output ports (these ports are for referencing only). (ports

32, 33, 36, and 37 are reserved by the system)

Ports “30”, “31”, “34”, and “35” outputs

Bit 7 6 5 4 3 2 1 0
Port 30
Port 31

Axis 8
Axis 16

Axis 7
Axis 15

Axis 6
Axis 14

Axis 5
Axis 13

Axis 4
Axis 12

Axis 3
Axis 11

Axis 2
Axis 10

Axis 1
Axis 9

Origin sensor status 0: ON; 1: OFF (Axis 1 is not connected)
Port 34
Port 35

Axis 8
Axis 16

Axis 7
Axis 15

Axis 6
Axis 14

Axis 5
Axis 13

Axis 4
Axis 12

Axis 3
Axis 11

Axis 2
Axis 10

Axis 1
Axis 9

HOLD status 0: No HOLD / 1: HOLD (Axis 1 is not connected)

• For details regarding MO ports "30" to "37", refer to Chapter 3 "9.5 Internal output variable".

SAMPLE

MO2()=&B10111000 ················ MO(27,25,24,23) are turned ON, and

MO(26,22,21,20) are turned OFF.

MO2(6,5,1)=&B010 ················ MO(25) are turned ON, and MO (26,21)

are turned OFF.

MO3() = 15 ····················· MO(33,32,31,30) are turned ON, and

MO(37,36,35,34) are turned OFF.

MO(37,35,27,20)=A ··············· The contents of the 4 lower bits

acquired when variable A is converted

t o a n i n t e g e r a r e o u t p u t t o

MO(37,35,27,20), respectively.

Related commands RESET, SET

REFERENCE

 • For details regarding bit
definitions, see Chapter 3
"10 Bit Settings".

MEMO

MO 8-95

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 60 MO

Functions

Format

MOm (b,···,b)

MO (mb,···,mb)

 Values m: port number

b: bit definition

2 to 7, 10 to 17, 20 to 27, 30 to 37

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Acquires the output status of the specified MO port.

SAMPLE

A%= MO0() ····················· Output status of ports MO(07) to MO(00)

is assigned to variable A%.

A%= MO0(6, 5, 1) ················ Output status of MO(06), MO(05) and

MO(01) is assigned to variable A%.

(If all above signals are 1(ON), then

A%=7.)

A%=MO(17,15,00) ················· Output status of M0(17), MO(15) and

M0(00) is assigned to variable A%.

(If all above signals except M0(15)

are 1 (ON), then A%=5.)

A%=MO(377,365,255,123) ·········· O u t p u t s t a t u s o f M 0 (3 7 7) ,

M O (3 6 5) , M O (2 5 5) a n d M 0 (1 2 3)

i s a s s i g n e d t o v a r i a b l e A % .

(If all above signals except M0(15)

are 1 (ON), then A%=15.)

Related commands RESET, SET

8-96 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 61 MOTOR
Controls the motor power status

Format

MOTOR ON

 OFF

 PWR

 Explanation This command controls the motor power on/off. The servo on/off of all robots can

also be controlled at the same time.

 • ON Turns on the motor power. All robot servos are also turned on at the

same time.

 • OFF.......... Turns off the motor power. All robot servos are also turned off at the

same time to apply the dynamic brake. For the axis with the brake, the

brake is applied to lock it.

 • PWR Turns on only the motor power.

SAMPLE

MOTOR ON ····················· Turns on the motor power and all robot

servos.

MOVE 8-97

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE
Performs absolute movement of robot axes

Format

MOVE [robot number]（(axis number,...) PTP ,point definition,option,option...

 P

 L

 C

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes specifiable

• If not input, all axes are specified.)

 Explanation Executes absolute movement of the specified axes.

 It is not enabled for axes of other robots or for auxiliary axes.

 • Movement type : PTP, linear interpolation, circular interpolation

 • Point data setting : Direct coordinate data input, point definition

 • Options : Speed setting, arch motion setting, STOPON condition setting,

CONT setting, acceleration setting, deceleration setting, plane

coordinate setting, port output setting (multiple ports outputs

specifiable), merged level setting

Options PTP Linear
interpolation

Arch
interpolation Remarks

Speed setting
(SPEED, DSPEED) 3 3 3

Enabled only for specified
MOVE statement

Speed setting
(VEL) - 3 3

Enabled only for specified
MOVE statement

Arch motion 3 - -
Enabled only for specified
MOVE statement

STOPON condition
setting 3 3 -

Enabled only by program
execution

CONT setting 3 3 3
Enabled only for specified
MOVE statement

Acceleration setting 3 3 -
Enabled only for specified
MOVE statement

Deceleration setting 3 3 -
Enabled only for specified
MOVE statement

Plane coordinate
setting - - 3

Enabled only for specified
MOVE statement

Port output setting - 3 3
Enabled only for specified
MOVE statement

8-98 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

Movement type

 ● PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: All specified axes have entered the OUT position range.

When two or more axes are specified, they will reach their target positions simultaneously. The

movement path of the axes is not guaranteed.

 ● Caution regarding commands which follow the MOVE P command:
If the next command following the MOVE P command is an executable command such as

a signal output command, that next command will start when the movement axis enters the

OUT position range. In other words, that next command starts before the axis arrives within the

target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when the axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when the axis enters the
OUT position range.

HALT Program stops and is reset when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HALTALL
All programs in execution stop when the axis enters the OUT position range,
task 1 is reset, and other tasks terminate. Therefore, the movement also
stops.

 HOLD Program temporarily stops when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HOLDALL All programs in execution temporarily stop when the axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

• The OUT position value is specified by parameter setting.

 This value can be changed within the program by using the OUTPOS command.

P1

MOVE command

DO(20) turns ON

MOVE P,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVE P,P1
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

MOVE P,P1
WAIT ARM
HOLD

MOVE P,P1
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

MEMO

MOVE 8-99

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

SAMPLE

MOVE P,P0 ····················Robot 1 moves from its current position

to the position specified by P0. (the

same occurs for MOVE PTP, P0).

• PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.

 ● Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: Movement of all specified axes has begun (within the tolerance range).

All movement axes arrive at the same time.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

SAMPLE

MOVE L,P0,P1 ··················The robot 1 moves (linear interpolation

movement) from its current position to

the position specified by P0, P1.

SAMPLE:MOVE L

P0

Current position

P1

Tolerance range

33810-R7-00

MEMO

CAUTION
 • In YRCX, the motion of
interpolation movement
c o m m a n d a n d E N D
condition are different
from conventional model.
Addit ion of the CONT
setting to the movement
command allows to the
equivalent movement
and END condit ion in
conventional model.

MEMO

8-100 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

●● Circular interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: Movement of all specified axes has begun.

All movement axes arrive at the same time.

In circular interpolation, an arc is generated based on 3 points: the current position, an

intermediate position, and the target position. Therefore, circular interpolation must be

specified by an even number of points.

SAMPLE

MOVE L,P20 ····················Linear interpolation movement of robot 1

occurs from the current position to P20.

MOVE C,P21,P22,P23,P20 ········Circular interpolation movement occurs

through points P21, P22, P23, P20.

MOVE L,P24 ····················Linear interpolation movement occurs

to P24.

SAMPLE:MOVE C

P23

Current position P24

P22

P21

P20

33811-R7-00

• Circular interpolation is possible within the following range: radius 0.100mm to 5,000.000mm.

• Circle distortion may occur, depending on the speed, acceleration, and the distance between points.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

Movement command types and the corresponding movement

Current position
Tolerance range

OUT position range
Target position

Current position
Tolerance range

OUT position range
Target position

The command ends when the axis
enters the OUT position range, and
the next command is then executed.

The next command is executed when
the axis arrives in the tolerance range.

1. PTP movement

2. Linear interpolation movement

33703-R9-00

CAUTION
 • In YRCX, the motion of
interpolation movement
c o m m a n d a n d E N D
condition are different
from conventional model.
Addit ion of the CONT
setting to the movement
command allows to the
equivalent movement
and END condit ion in
conventional model.

MEMO

MOVE 8-101

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

Point data setting types

 ● Direct numeric value input PTP Linear interpolation Circular interpolation

Format

p1 p2 p3 p4 p5 p6 f

 Values p1 to p6Space-separated coordinate values for each axis

 f ...Hand system flag)

 Explanation Directly specifies coordinate values by a numeric value. If an integer is used,

this is interpreted as "pulse" units, and if a real number (with decimal point)

is used, this is interpreted as "mm/deg" units, with movement occurring

accordingly. If both integers and real numbers are used together (mixed), all

coordinate values will be handled in "mm/deg" units.

 The types of movements in which this specification is possible are the PTP

movement and the linear interpolation movement.

 Hand system flags can be specified for SCARA robots when directly specifying

the coordinate values in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at

"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be

set to indicate that there is no hand system flag.

 1: Right-handed system is used to move to a specified position.

 2: Left-handed system is used to move to a specified position.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

NOTE
 • I f b o t h i n t e g e r s a n d
real numbers are used
together (m ixed) , a l l
coordinate values wi l l
be handled in "mm/deg"
units.

CAUTION
 • When performing linear
interpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target pos i t ion. I f the
hand system are different,
an error will occur and
robot movement will be
disabled.

 • When performing a linear
interpolation, the current
position's first arm and
s e c o n d a r m ro t a t i o n
information must be the
same as the movement
dest inat ion's fi r s t arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

MEMO

8-102 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

SAMPLE

MOVE P,10000 10000 1000 1000 0 0

 ····················PTP movement of robot 1 occurs from

current position to the specified

position.

MOVE P,100.0 100.0 50.0 45.0 0.0 0.0 2

 ····················PTP movement of robot 1 occurs from

current position to the specified

position with Left-handed system.

MOVE P,-180.0 -430.0 50.0 180.0 0.0 0.0 1 -1 1

 ····················PTP movement of robot 1 occurs from

current position to the specified

position (first arm: -180°to 360°,

second arm: 180° to 360°) with right-

handed system.

 ● Point definition PTP Linear interpolation Circular interpolation

Format

point expression , point expression...

 Explanation Specifies a <point expression>. Two or more data items can be designated by

separating them with a comma (,).

 Circular interpolation must be specified by an even number of points.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVE P,P1 ····················Robot 1 moves from the current position

to the position specified by P1.

MOVE P,P20,P0,P100 ···········Robot 1 moves in sequence from the

current position to positions specified

by P20, P0, P100.

CAUTION
 • When moving the robot
by l i n e a r o r c i rc u l a r
interpolation to a point
where a hand system flag
is specified, be sure that
the same hand system is
used at both the current
and target positions. If the
hand system are different,
an error will occur and
robot movement will be
disabled.

MEMO

CAUTION
 • When performing a linear
and circular interpolation,
the cur rent pos i t ion ' s
f i r s t a r m and second
arm rotation information
must be the same as the
movement destination's
first arm and second arm
rotation information. If the
two are different, an error
will occur and movement
will be disabled.

MOVE 8-103

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

Option types

 ● Speed setting 1 PTP Linear interpolation Circular interpolation

Format

1. SPEED =expression

2. S =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program

movement speed (%)].

 This option is enabled only for the specified MOVE statement.

SAMPLE

MOVE P,P10,S=10 ··············Robot 1 moves from the current position

to the position specified by P10, at

10% of the program movement speed.

 ● Speed setting 2● PTP Linear interpolation Circular interpolation

Format

1. DSPEED =expression

2. DS =expression

 Values expression0.01 to 100.00 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec or deg/sec)] × [movement speed (%)].

 This option is enabled only for the specified MOVE statement.

 • Movement always occurs at the DSPEED <expression> value (%)

 without being affected by the automatic movement speed value (%).

SAMPLE

MOVE P,P10,DS=0.1 ············Robot 1 moves from the current position

to the position specified by P10, at 0.1%

of the Robot maximum speed.

NOTE
 • This option specifies only
t h e ma x i mu m s p e e d
and does not guarantee
movement at the specified
speed.

NOTE
 • SPEED option and DSPEED
option cannot be used
together.

8-104 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● Speed setting 3 PTP Linear interpolation Circular interpolation

Format

VEL =expression

 Values expression 1 to maximum speed depending on the model (units: mm/sec)

 Explanation Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes

in an <expression>. This option is specifiable when movement type is linear

interpolation or circular interpolation movements.

 This option is enabled only for the specified MOVE statement.

SAMPLE

MOVE L,P10,VEL=100 ············Robot 1 moves from the current position

to the position specified by P10 at the

maximum composite speed of 100 mm/sec.

of the XYZ axis.

NOTE
 • This option specifies only
the maximum composite
s p e e d a n d d o e s n o t
guarantee movement at
the specified speed.

MOVE 8-105

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● Arch motion setting PTP Linear interpolation Circular interpolation

Format

x =expression {expression（, expression2}

 Values x ..

expression

expression1, expression2

Specifies an axis from A1 to A6

Arch position

Integer value: "pulse" units.

 Real number (with decimal point): "mm/deg" units.

Arch distance 1, Arch distance 2

Integer value: "pulse" units.

 Real number (with decimal point): "mm/deg" units.

• When there is a real value in any of the <expression>, <expression 1>, and <expression 2>, all

expressions are handed as real value.

 Explanation 1. The "x" specified axis begins moving toward the position specified by the

<expression> ("1" shown in the Fig. below).

 2. When the axis specified by "x" moves the arch distance 1 or more, other axes

move to their target positions ("2" shown in the figure below).

 3. The axis specified by "x" moves to the target position so that the remaining

movement distance becomes the arch distance 2 when the movement of

other axes is completed ("3" shown in the figure below).

 4. The command ends when all axis enter the OUT position range.

 This option can be used only for PTP movement.

 When the axis specified by "x" is the first arm or second arm of the SCARA

robot or the axis 1 or axis 2 of the XY robot, the <expression> and target

position value are limited to an integer (pulse units).

SAMPLE

MOVE P,P1,A3=0{150,100} ········The A3-axis moves from the current position

to the "0 pulse" position. After that, other

axes move to P1. Finally, the A3-axis moves

to P1.

SAMPLE:MOVE A3

Target positionCurrent position

1. A3-axis movement 3. A3-axis movement

2. Other axes movement

Arch distance 1
Arch distance 2

A3=0

33704-R9-00

MEMO

NOTE
 • The axis arch distance
p a r a m e t e r s c a n b e
changed using ARCHP1/
ARCHP2. The smaller the
value, the shor ter the
movement execut ion
time.

8-106 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

• When multiple points are specified in PTP movement, the axis in arch motion setting also

moves to the target position.

PTP movement

P11P10

All axes move to P10.

A3=0

MOVE P, P10, P11, A3 = 0

 ● STOPON condition setting PTP linear interpolation Circular interpolation

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression

are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement

occurs, and the command is terminated.

 This option can only be used for PTP movement and linear interpolation

movement.

 This option is only possible by program execution.

SAMPLE

MOVE P,P100,STOPON DI(20)=1

 ····················Robot 1 moves from the current

position to the position specified by

P100. If the "DI (20) = 1" condition

is met during movement, a deceleration

and stop occurs, and the next step is

then executed.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

MEMO

CAUTION
 • Addition of the STOPON
condition setting disables
the CONT setting in the
P T P m o v e m e n t a n d
the linear interpolation
movement.

MEMO

MOVE 8-107

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● CONT setting PTP Linear interpolation Circular interpolation

Format

CONT

 Explanation When movement is executed with CONT setting option, Movable axes will

begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration

and acceleration sections, enabling continuous movement without intermediate

stops.

 This option is enabled only for the specified MOVE statement.

 ● Caution regarding MOVE L / MOVE C command with CONT setting:
If the next command following the MOVE L / MOVE C command with CONT setting is

an executable command such as a signal output command, that next command will start

immediately after axis movement begins. In other words, that next command starts before the

axis arrives within the target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output immediately after movement along the final path begins.

DELAY DELAY command is executed and standby starts immediately after
movement along the final path begins.

HALT Program stops and is reset immediately after movement along the final path
begins. Therefore, axis movement also stops.

HALTALL
All programs in execution stop immediately after movement along the
final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

 HOLD Program temporarily stops immediately after movement along the final path
begins. Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop immediately after movement
along the final path begins. Therefore, the movement also stops.

WAIT WAIT command is executed immediately after movement along the final
path begins.

P1

MOVE command

DO(20) turns ON

MOVE L,P1
CONT
DO(20)=1

DO(20) turns ON

MOVE L,P1
DO(20)=1

Tolerance

Final target position

33808-R9-00

CAUTION
 • In YRCX, the motion of
interpolation movement
c o m m a n d a n d E N D
condition are different
from conventional model.
Addit ion of the CONT
setting to the movement
command allows to the
equivalent movement
and END condit ion in
c o nve n t i o n a l m o d e l .

NOTE
 • The CONT sett ing can
b e u s e d t o r e d u c e
t h e m o v e m e n t E N D
positioning time. The path
to the target point is not
guaranteed.

8-108 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

SAMPLE

MOVE P,P10,P11,CONT

 ····················Robot 1 Moves from the current position

to the position specified by P10, and

then moves to P11 without waiting

for the moving axes to arrive in the

tolerance range.

SAMPLE:MOVE P CONT

P10

Current position

P11

OUT position range (*1)

*1: “CONT pulse range”
 if the value is specified in the
 CONT pulse parameter.

Next movement begins after
entering the OUT position range

P10

Current position

P11

OUT position range

Next movement begins after
entering the tolerance range

Tolerance range

With CONT setting:

Without CONT setting:

33814-R7-00

SAMPLE

MOVE L,P10,CONT

MOVE L,P11

 ····················Robot 1 Moves from the current position to the

position specified by P10, and then moves (linear

interpolation movement) to P11 without waiting for

the moving axes to arrive in the tolerance range, and

completes the movement within the tolerance range.

• The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVE L CONT

P10

P11

Next movement begins after
entering the deceleration zones

P10

P11

Next movement begins after
entering the tolerance range

Tolerance range

Deceleration zones

With CONT setting:

Without CONT setting:

33810-R9-00

MEMO

MOVE 8-109

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● Acceleration setting PTP Linear interpolation Circular interpolation

Format

ACC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot acceleration rate in the <expression>. The actual robot

acceleration is determined by the acceleration coefficient parameter setting.

 This option can only be used for PTP movement and linear interpolation

movement and is enabled only for the specified MOVE statement.

SAMPLE

MOVE L,P100,ACC=10 ············Robot 1 moves at an acceleration rate of

10% from the current position to the

position specified by P100.

 ● Deceleration setting PTP Linear interpolation Circular interpolation

Format

DEC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot deceleration rate in an <expression>. The actual robot

deceleration is determined by the acceleration coefficient parameter setting (the

setting is specified as a percentage of the acceleration setting value (100%)).

 This option can only be used for PTP movement and linear interpolation

movement and is enabled only for the specified MOVE statement.

SAMPLE

 MOVE L,P100,DEC=20 ·········Robot 1 moves at a deceleration rate of

20% from the current position to the

position specified by P100.

8-110 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● Coordinate plane setting PTP Linear interpolation Circular interpolation

Format

 XY

 YZ

 ZX

 Values XY ..XY coordinate plane

 YZ ..YZ coordinate plane

 ZX ..ZX coordinate plane

 Explanation When circular interpolation is executed by setting coordinates, this option

executes circular interpolation so that the projection on the specified coordinate

plane becomes a circle.

 This option can be used for circular interpolation movement and is enabled only

for the specified MOVE statement.

SAMPLE

P10 = 100.000 100.000 20.000 0.000 0.000 0.000

P11 = 150.000 100.000 0.000 0.000 0.000 0.000

P12 = 150.000 150.000 20.000 0.000 0.000 0.000

P13 = 100.000 150.000 40.000 0.000 0.000 0.000

MOVE P,P10 ····················Robot 1 moves from the current position to the

position specified by P10.

MOVE C,P11,P12

MOVE C,P13,P10 ················Moves continuously along a 3-dimensional

circle generated at P10, P11, P12, and P12,

P13, P10 ········(1)

MOVE C,P11,P12,XY

MOVE C,P13,P10,XY ·············Moves continuously along a circle on an XY

plane generated at P10, P11, P12, and P12, P13,

P10. Z-axis moves to the position specified by

P12 and P10 (the circle's target position)

(2)

SAMPLE: MOVE C coordinate plane
Y＋

150
100

150

P11

P12
P13

(1)

X＋→

→
Z＋

P10P10 120
140

(2)

33822-R9-00

NOTE
 • If no coordinate plane is
specified, the robot moves
along a 3-dimensional
circle.

 • When a 2-axis robot is
used, the robot moves
along a circle on the XY
plane.

MOVE 8-111

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 62 MOVE

 ● Port output setting PTP Linear interpolation Circular interpolation

Format 1

 DO m(b,···,b)=expression 1 @ expression 2

 MO

 SO

Format 2

 DO (mb,···,mb)=expression 1 @ expression 2

 MO

 SO

 Values m: port number

b: bit definition

expression 1

expression 2

2 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from

the left in descending order (high to low).

Value which is output to the specified port (only

integers are valid).

Position where the port output occurs. This position

can be specified in "mm" units down to the 3rd decimal

position.

 Explanation During linear interpolation or circular interpolation movement, this command
option outputs the value of <expression 1> to the specified port when the robot
reaches the <expression 2> distance (units: "mm") from the start position.

 The <expression 2> numeric value represents a circle radius (not arc length)

centered on the movement START point.

 This command option can only be used with linear or circular interpolation

movement, and it can be specified no more than 2 times per MOVE statement.

 If no hardware port exists, nothing is output.

SAMPLE 1

 MOVE P,P0

 MOVE L,P1,DO2()=105@25.85

 ··········· During linear interpolation movement of robot 1

to P1, 105 (&B01101001) is output to DO2() when

the robot reaches a distance of 25.85mm from

P0.

SAMPLE 2

 A!=10

 B!=20

 MOVE L,P2,MO(22)=1@A!,MO(22)=0@B!

 ··········· After the 1 starts toward P2, MO(22)

switches ON when robot 1 leaves a distance of

10mm, and switches OFF when robot 1 leaves a

distance of 20mm.

Related commands MOVEI, MOVET, DRIVE, DRIVEI, WAIT ARM

CAUTION
 • Output to ports "0" and "1"
is not allowed at DO, MO,
and SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

8-112 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI
Performs relative movement of robot axes

Format

MOVEI [robot number](axis number,...) PTP ,point definition , option, option…

 P

 L

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes specifiable

• If not input, all axes are specified.)

 Explanation Executes relative position movement of the specified robot.

 It is not enabled for axes of other robots or for auxiliary axes.

 • Movement type : PTP, linear interpolation

 • Point data setting : Direct coordinate data input, point definition

 • Options : Speed setting, STOPON condition setting, CONT setting,

acceleration setting, deceleration setting

Options PTP Linear
interpolation Remarks

Speed setting
(SPEED, DSPEED) 3 3

Enabled only for specified
MOVEI statement

Speed setting
(VEL) - 3

Enabled only for specified
MOVEI statement

STOPON condition
setting 3 3

Enabled only by program
execution

CONT setting 3 3
Enabled only for specified
MOVEI statement

Acceleration setting 3 3
Enabled only for specified
MOVEI statement

Deceleration setting - 3
Enabled only for specified
MOVEI statement

• If the MOVEI statement is interrupted and then re-executed, the movement target position can

be selected at the "MOVEI/DRIVEI start position" setting in the controller parameter. For details,

refer to the YRCX user's or operator's manual.

 1) KEEP (default setting) Continues the previous (before interruption) movement. The original

target position remains unchanged.

 2) RESET Relative movement begins anew from the current position. The new

target position is different from the original one (before interruption).

(Backward compatibility)

MEMO

MOVEI 8-113

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

Movement type

 ● PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: All specified axes have entered the OUT position range.

When two or more axes are specified, they will reach their target positions simultaneously. The

movement path of the axes is not guaranteed.

 ● Caution regarding commands which follow the MOVEI P command:
If the next command following the MOVEI P command is an executable command such as

a signal output command, that next command will start when the movement axis enters the

OUT position range. In other words, that next command starts before the axis arrives within the

target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the
OUT position range.

HALT Program stops and is reset when axis enters the OUT position range.
Therefore, axis movement also stops.

HALTALL All programs in execution stop when axis enters the OUT position range, task
1 is reset, and other tasks terminate. Therefore, the movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range.
Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop when axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

• The OUT position value is specified by parameter setting.

 This value can be changed within the program by using the OUTPOS command.

P1

MOVEI command

DO(20) turns ON

MOVEI P,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVEI P,P1
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

MOVEI P,P1
WAIT ARM
HOLD

MOVEI P,P1
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

33826-R7-00

MEMO

8-114 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

SAMPLE

MOVEI P,P0 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P0.

• PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.

 ● Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: Movement of all specified axes has begun (within the tolerance range).

All movement axes arrive at the same time.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

SAMPLE

MOVE L,P0,P1 ··················From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by P0, P1.

SAMPLE:MOVEI L

P0

Current position

P1

Tolerance range

33810-R7-00

MEMO

CAUTION
 • In YRCX, the motion of
interpolation movement
c o m m a n d a n d E N D
condition are different
from conventional model.
Addit ion of the CONT
setting to the movement
command allows to the
equivalent movement
and END condit ion in
conventional model.

MEMO

MOVEI 8-115

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

Point data setting types

 ● Direct numeric value input PTP Linear interpolation

Format

p1 p2 p3 p4 p5 p6 f

 Values p1 to p6Space-separated coordinate values for each axis

 f ...Hand system flag

 Explanation Directly specifies coordinate values by a numeric value. If an integer is

used, this is interpreted as "pulse" units, and if a real number is used, this is

interpreted as "mm/deg" units, with movement occurring accordingly.

 Hand system flags can be specified for SCARA robots when directly specifying

the coordinate values in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at

"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be

set to indicate that there is no hand system flag.

 1: Right-handed system is used to move to a specified position.

 2: Left-handed system is used to move to a specified position.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P, 10000 10000 1000 1000 0 0

 From its current position, the axis of robot 1

moves (PTP movement) the specified amount (pulse

units).

NOTE
 • I f b o t h i n t e g e r s a n d
real numbers are used
together (m ixed) , a l l
coordinate values wi l l
be handled in "mm/deg"
units.

CAUTION
 • When performing linear
interpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target pos i t ion. I f the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

 • When performing a linear
interpolation, the current
position's first arm and
s e c o n d a r m ro t a t i o n
information must be the
same as the movement
dest inat ion's fi r s t arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

MEMO

8-116 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

●● Point definition PTP ●● Linear interpolation

Format

point expression , point expression...

 Explanation Specifies a <point expression>. Two or more data items can be designated by

separating them with a comma (,).

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P,P1 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P1.

CAUTION
 • When moving the robot
by linear interpolation to
a point where a hand
system flag is specified,
be sure that the same
hand system is used at
both the cur rent and
target posit ions. I f the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

MEMO

CAUTION
 • When performing a linear
interpolation, the current
position's first arm and
s e c o n d a r m ro t a t i o n
information must be the
same as the movement
dest inat ion's fi r s t arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

MOVEI 8-117

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

Option types

 ● Speed setting 1● PTP Linear interpolation

Format

1. SPEED =expression

2. S =expression

 Values expression 1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program

movement speed (%)].

 This option is enabled only for the specified MOVEI statement.

SAMPLE

MOVEI P,P10,S=10 ··············From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P10, at 10% of the

program movement speed.

 ● Speed setting 2● PTP Linear interpolation

Format

1. DSPEED =expression

2. DS =expression

 Values expression0.01 to 100.00 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec or deg/sec)] × [movement speed (%)].

 This option is enabled only for the specified MOVEI statement.

 • Movement always occurs at the DSPEED <expression> value (%)

 without being affected by the automatic movement speed value (%).

SAMPLE

MOVEI P,P10,DS=0.1 ···········From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P10, at 0.1% of the

robot maximum speed.

NOTE
 • This option specifies only
t h e ma x i mu m s p e e d
and does not guarantee
movement at the specified
speed.

NOTE
 • SPEED option and DSPEED
option cannot be used
together.

8-118 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

 ● Speed setting 3 PTP Linear interpolation

Format

VEL =expression

 Values expression1 to maximum speed depending on the model

(units: mm/sec)

 Explanation Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in

an <expression>. This option is specifiable when the movement type is linear

interpolation movements.

 This option is enabled only for the specified MOVEI statement.

SAMPLE

MOVEI L,P10,VEL=100 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by P10,

at the maximum composite speed of 100

mm/sec. of the XYZ axis.

 ● STOPON condition setting PTP Linear interpolation

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression

are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement

occurs, and the command is terminated.

 This option is only possible by program execution.

SAMPLE

MOVEI P,P100,STOPON DI(20)=1

 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P100. If the "DI (20)

= 1" condition is met during movement,

a deceleration and stop occurs, and

the next step is then executed.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

NOTE
 • This option specifies only
the maximum composite
s p e e d a n d d o e s n o t
guarantee movement at
the specified speed.

CAUTION
 • Addition of the STOPON
condition setting disables
the CONT setting.

MEMO

MOVEI 8-119

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

 ● CONT setting PTP Linear interpolation

Format

CONT

 Explanation When movement is executed with CONT setting option, Movable axes will begin

to execute the next command without waiting the completion their movement

(entering the tolerance range). If the next command is a movement command, the

2 movement paths are linked by connecting the deceleration and acceleration

sections, enabling continuous movement without intermediate stops.

 This option is enabled only for the specified MOVEI statement.

 ● Caution regarding MOVEI L command with CONT setting:
If the next command following the MOVEI L command with CONT setting is an executable

command such as a signal output command, that next command will start immediately after

axis movement begins. In other words, that next command starts before the axis arrives within

the target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output immediately after movement along the final path begins.

DELAY DELAY command is executed and standby starts immediately after
movement along the final path begins.

HALT Program stops and is reset immediately after movement along the final path
begins. Therefore, axis movement also stops.

HALTALL
All programs in execution stop immediately after movement along the
final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

 HOLD Program temporarily stops immediately after movement along the final path
begins. Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop immediately after movement
along the final path begins. Therefore, the movement also stops.

WAIT WAIT command is executed immediately after movement along the final path begins.

P1

MOVEI command

DO(20) turns ON

MOVEI L,P1
CONT
DO(20)=1

DO(20) turns ON

MOVEI L,P1
DO(20)=1

Tolerance

Final target position

HOLD execution
(program temporarily stops)

MOVEI L,P1
CONT
HOLD

MOVEI L,P1
HOLD

Tolerance

Final target position

HOLD execution
(program temporarily stops)

33814-R9-00

CAUTION
 • In YRCX, the motion of
interpolation movement
c o m m a n d a n d E N D
condition are different
from conventional model.
Addit ion of the CONT
setting to the movement
command allows to the
equivalent movement
and END condit ion in
c o nve n t i o n a l m o d e l .

NOTE
 • The CONT sett ing can
b e u s e d t o r e d u c e
the movement S TAR T
positioning time.

8-120 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

SAMPLE

MOVEI P,P10,P11,CONT

 ········ From its current position, the axis of robot 1 moves

(PTP movement) the amount specified by P10, and then

moves the amount specified by P11 without waiting for

the moving axes to arrive in the tolerance range.

SAMPLE:MOVEI P CONT

P10

Current position

P11

OUT position range (*1)
*1: “CONT pulse range”
 if the value is specified in the
 CONT pulse parameter.

Next movement begins after
entering the OUT position range

P10

Current position

P11

OUT position range

Next movement begins after
entering the tolerance range

Tolerance range

With CONT setting:

Without CONT setting:

33815-R9-00

SAMPLE

MOVEI L,P10,CONT

MOVEI L,P11

 ········ From its current position, the axis of robot 1 moves

(linear interpolation movement) the amount specified by

P10. and then moves the amount specified by P11 without

waiting for the moving axes to arrive in the tolerance

range, and completes the movement within the tolerance

range.

• The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVEI L CONT

P10

P11

Next movement begins after
entering the deceleration zones

P10

P11

Next movement begins after
entering the tolerance range

Tolerance range

Deceleration zones

With CONT setting:

Without CONT setting:

33810-R9-00

MEMO

MOVEI 8-121

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 63 MOVEI

 ● Acceleration setting PTP Linear interpolation

Format

ACC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot acceleration rate in an <expression>. The actual robot

acceleration is determined by the acceleration coefficient parameter setting.

 This option is enabled only for the specified MOVEI statement.

SAMPLE

MOVEI L,P100,ACC=10 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by P100

at an acceleration rate of 10%.

 ● Deceleration setting PTP Linear interpolation

Format

DEC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot deceleration rate in an <expression>. The actual robot

deceleration is determined by the acceleration coefficient parameter setting (the

setting is specified as a percentage of the acceleration setting value (100%)).

 This option is enabled only for the specified MOVEI statement.

SAMPLE

MOVEI L,P100,DEC=20 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by P100

at a deceleration rate of 20%.

Related commands MOVE, MOVET, DRIVE, DRIVEI, WAIT ARM

8-122 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET
Performs relative movement of all robot axes in tool coordinates

Format

MOVET [robot number](axis number,...) PTP , point definition , option, option...

 P

 L

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes specifiable

• If not input, all axes are specified.)

 Explanation Executes relative position movement of the specified axes in the tool coordinates.

 It is not enabled for axes of other robots or for auxiliary axes.

 • Movement type : PTP, linear interpolation

 • Point data setting : Direct coordinate data input, point definition

 • Options : Speed setting, STOPON condition setting, CONT setting,

acceleration setting, deceleration setting

Options PTP Linear
interpolation Remarks

Speed setting
(SPEED, DSPEED) 3 3

Enabled only for specified
MOVET statement

Speed setting
(VEL) - 3

Enabled only for specified
MOVET statement

STOPON condition
setting 3 3

Enabled only by program
execution

CONT setting 3 3
Enabled only for specified
MOVET statement

Acceleration setting 3 3
Enabled only for specified
MOVET statement

Deceleration setting - 3
Enabled only for specified
MOVET statement

MOVET 8-123

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

Movement type

 ● PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: All specified axes have entered the OUT position range.

When two or more axes are specified, they will reach their target positions simultaneously. The

movement path of the axes is not guaranteed.

 ● Caution regarding commands which follow the MOVET P command:
If the next command following the MOVET P command is an executable command such as

a signal output command, that next command will start when the movement axis enters the

OUT position range. In other words, that next command starts before the axis arrives within the

target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output when the axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when the axis enters the
OUT position range.

HALT Program stops and is reset when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HALTALL
All programs in execution stop when the axis enters the OUT position range,
task 1 is reset, and other tasks terminate. Therefore, the movement also
stops.

 HOLD Program temporarily stops when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HOLDALL All programs in execution temporarily stop when the axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statements are used to execute the next command after the axis enters the tolerance range.

• The OUT position value is specified by parameter setting.

 This value can be changed within the program by using the OUTPOS command.

P1

MOVET command

DO(20) turns ON

MOVET P,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVET P,P1
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

MOVET P,P1
WAIT ARM
HOLD

MOVET P,P1
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

33826-R7-00

MEMO

8-124 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

SAMPLE

MOVET P,P0 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P0 in the tool

coordinates.

• PTP movement is faster than interpolation movement, but when executing continuous

movement to multiple points, a positioning stop occurs at each point.

 ● Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance

range).

Execution END condition: Movement of all specified axes has begun (within the tolerance

range).

All movement axes arrive at the same time.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending

on the R-axis movement distance.

SAMPLE

MOVET L,P0,P1 ·················From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by P0,

P1 in the tool coordinates.

SAMPLE:MOVET L

P0

Current position

P1

Tolerance range

33810-R7-00

MEMO

MEMO

MOVET 8-125

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

Point data setting types

 ● Direct numeric value input PTP Linear interpolation

Format

p1 p2 p3 p4 p5 p6 f

 Values p1 to p6Space-separated coordinate values for each axis

 f ...Hand system flag

 Explanation Directly specifies coordinate values by a numeric value. If an integer is

used, this is interpreted as "pulse" units, and if a real number is used, this is

interpreted as "mm/deg" units, with movement occurring accordingly.

 Hand system flags can be specified for SCARA robots when directly specifying

the coordinate values in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at

"f". If a number other than 1 or 2 is set, or if no number is designated, 0 will be

set to indicate that there is no hand system flag.

 1: Right-handed system is used to move to a specified position.

 2: Left-handed system is used to move to a specified position.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVET P, 10.000 10.000 10.000 10.000 0.000 0.000

 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

specified amount (mm units) in the tool

coordinates.

NOTE
 • I f b o t h i n t e g e r s a n d
real numbers are used
together (m ixed) , a l l
coordinate values wi l l
be handled in "mm/deg"
units.

CAUTION
 • When performing linear
interpolation with a hand
system flag specified,
be sure that the same
hand system is used at
the current position and
target pos i t ion. I f the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

 • When performing a linear
interpolation, the current
position's first arm and
s e c o n d a r m ro t a t i o n
information must be the
same as the movement
dest inat ion's fi r s t arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

MEMO

8-126 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

 ● Point definition PTP Linear interpolation

Format

point expression , point expression...

 Explanation Specifies a <point expression>. Two or more data items can be designated by

separating them with a comma (,).

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVET P,P1 ····················From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P1 in the tool

coordinates.

CAUTION
 • When moving the robot
by linear interpolation to
a point where a hand
system flag is specified,
be sure that the same
hand system is used at
both the cur rent and
target posit ions. I f the
same hand system is not
used, an error will occur
and robot movement will
be disabled.

MEMO

CAUTION
 • When performing a linear
interpolation, the current
position's first arm and
s e c o n d a r m ro t a t i o n
information must be the
same as the movement
dest inat ion's fi r s t arm
and second arm rotation
information. If the two
are different, an error will
occur and movement will
be disabled.

MOVET 8-127

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

Option types

 ● Speed setting 1 PTP Linear interpolation

Format

1. SPEED =expression

2. S =expression

 Values expression 1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec)] × [automatic movement speed (%)]

 × [program movement speed (%)].

 This option is enabled only for the specified MOVET statement.

SAMPLE

MOVET P,P10,S=10 ··············From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P10 in the tool

coordinates, at 10% of the program

movement speed.

 ● Speed setting 2 PTP Linear interpolation

Format

1. DSPEED =expression

2. DS =expression

 Values expression0.01 to 100.00 (units: %)

 Explanation Specifies the program speed in an <expression>.

 The actual speed will be as follows:

 • [Robot max. speed (mm/sec or deg/sec)] × [movement speed (%)].

 This option is enabled only for the specified MOVET statement.

 • Movement always occurs at the DSPEED <expression> value (%)

 without being affected by the automatic movement speed value (%).

SAMPLE

MOVET P,P10,DS=0.1 ···········From its current position, the axis

of robot 1 moves (PTP movement) the

amount specified by P10 in the tool

coordinates, at 0.1% of the robot

maximum speed.

NOTE
 • This option specifies only
t h e ma x i mu m s p e e d
and does not guarantee
movement at the specified
speed.

NOTE
 • SPEED option and DSPEED
option cannot be used
together.

8-128 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

 ● Speed setting 3 PTP Linear interpolation

Format

VEL =expression

 Values expression1 to maximum speed depending on the model

 (units: mm/sec)

 Explanation Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in

an <expression>. This option is specifiable when the movement type is linear

interpolation movements.

 This option is enabled only for the specified MOVET statement.

SAMPLE

MOVEI L,P10,VEL=100 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by

P10 in the tool coordinates, at the

maximum composite speed of 100 mm/sec.

of the XYZ axes.

 ● STOPON condition setting PTP Linear interpolation

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression

are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement

occurs, and the command is terminated.

 This option is only possible by program execution.

SAMPLE

MOVET P,P100,STOPON DI(20)=1

 ····················From its current position, the axis of

robot 1 moves (PTP movement) the amount

specified by P100 in the tool coordinates.

If the "DI (20) = 1" condition is met

during movement, a deceleration and stop

occurs, and the next step is then executed.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

NOTE
 • This option specifies only
the maximum composite
s p e e d a n d d o e s n o t
guarantee movement at
the specified speed.

CAUTION
 • Addition of the STOPON
condition setting disables
the CONT setting.

MEMO

MOVET 8-129

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

 ● CONT setting PTP Linear interpolation

Format

CONT

 Explanation When movement is executed with CONT setting option, Movable axes will

begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration

and acceleration sections, enabling continuous movement without intermediate

stops.

 This option is enabled only for the specified MOVET statement.

 ● Caution regarding MOVET L command with CONT setting:
If the next command following the MOVET L command with CONT setting is an executable

command such as a signal output command, that next command will start immediately after

axis movement begins. In other words, that next command starts before the axis arrives within

the target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output immediately after movement along the final path begins.

DELAY DELAY command is executed and standby starts immediately after
movement along the final path begins.

HALT Program stops and is reset immediately after movement along the final path
begins. Therefore, the axis movement also stops.

HALTALL
All programs in execution stop immediately after movement along the
final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

 HOLD Program temporarily stops immediately after movement along the final path
begins. Therefore, the axis movement also stops.

HOLDALL All programs in execution temporarily stop immediately after movement
along the final path begins. Therefore, the movement also stops.

WAIT WAIT command is executed immediately after movement along the final path begins.

P1

MOVET command

DO(20) turns ON

MOVET L,P1
CONT
DO(20)=1

DO(20) turns ON

MOVET L,P1
DO(20)=1

Tolerance

Final target position

HOLD execution
(program temporarily stops)

MOVET L,P1
CONT
HOLD

MOVET L,P1
HOLD

Tolerance

Final target position

HOLD execution
(program temporarily stops)

33814-R9-00

NOTE
 • The CONT sett ing can
b e u s e d t o r e d u c e
the movement S TAR T
positioning time.

8-130 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

SAMPLE

MOVET P,P10,P11,CONT

 ····· From its current position, the axis of robot 1 moves

(PTP movement) the amount specified by P10 in the tool

coordinates, and then moves the amount specified by P11 in

the tool coordinates without waiting for the moving axes

to arrive in the tolerance range.

SAMPLE:MOVET P CONT

P10

Current position

P11

OUT position range (*1)
*1: “CONT pulse range”
 if the value is specified in the
 CONT pulse parameter.

Next movement begins after
entering the OUT position range

P10

Current position

P11

OUT position range

Next movement begins after
entering the tolerance range

Tolerance range

With CONT setting:

Without CONT setting:

33820-R9-00

SAMPLE

MOVET L,P10,CONT

MOVET L,P11

 ····· From its current position, the axis of robot 1 moves

(linear interpolation movement) the amount specified by

P10 in the tool coordinates, and then moves the amount

specified by P11 in the tool coordinates without waiting

for the moving axes to arrive in the tolerance range, and

completes the movement within the tolerance range.

• The interpolation movement with CONT setting doesn't stop at intermediate points in the

continuous movement.

SAMPLE:MOVET L CONT P10

P11

Next movement begins after
entering the deceleration zones

P10

P11

Next movement begins after
entering the tolerance range

Tolerance range

Deceleration zonesWith CONT setting:

Without CONT setting:

33821-R9-00

MEMO

MOVET 8-131

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 64 MOVET

 ● Acceleration setting PTP Linear interpolation

Format

ACC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot acceleration rate in an <expression>. The actual robot

acceleration is determined by the acceleration coefficient parameter setting.

 This option is enabled only for the specified MOVET statement.

SAMPLE

MOVET L,P100,ACC=10 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by

P100 in the tool coordinates at an

acceleration rate of 10%.

 ● Deceleration setting PTP Linear interpolation

Format

DEC =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the robot deceleration rate in an <expression>. The actual robot

deceleration is determined by the acceleration coefficient parameter setting (the

setting is specified as a percentage of the acceleration setting value (100%)).

 This option is enabled only for the specified MOVET statement.

SAMPLE

MOVET L,P100,DEC=20 ···········From its current position, the axis of

robot 1 moves (linear interpolation

movement) the amount specified by

P100 in the tool coordintes at a

deceleration rate of 20%.

Related commands MOVE, MOVEI, DRIVE, DRIVEI, WAIT ARM

8-132 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 65 MTRDUTY
Acquires the motor load factor of the specified axis

Format

MTRDUTY [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the motor load factor (1 to 100) of the axis specified by the <axis number>.

SAMPLE

A=MTRDUTY(1) ··················· The motor load factor of axis 1 of

robot 1 is assigned to variable A.

OFFLINE 8-133

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 66 OFFLINE
Sets a specified communication port to the "offline" mode

Format

OFFLINE ETH

 CMU

 Explanation Changes the communication mode parameter in order to switch the communication

mode to OFFLINE.

 ETH Changes the Ethernet communication mode parameter to

OFFLINE and clears the transmission and reception buffers.

 CMU Changes the RS-232C communication mode parameter to

OFFLINE, resets the communication error, and clears the

transmission and reception buffers.

 No setting Changes the Ethernet and RS-232C communication mode

parameter to OFFLINE, resets the communication error

(RS-232C only), and clears the transmission and reception

buffers.

SAMPLE

OFFLINE

SEND CMU TO A$

SEND CMU TO P10

ONLINE

HALT

8-134 Chapter 8 Robot Language Lists

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 67 ON ERROR GOTO
Jumps to a specified label when an error occurs

Format

1. ON ERROR GOTO label

2. ON ERROR GOTO 0

 Values Error output informationERR: Error code number

ERL: Line number where error occurred

 Explanation Even if an error occurs during execution of the robot language, this statement allows

the program to jump to the error processing routine specified by the <label>, allowing

the program to continue without being stopped (this is not possible for some serious

errors.)

 If "0" is specified instead of the <label>, the program stops when an error occurs, and

an error message displays.

 If ON ERROR GOTO "0" is executed at any place other than an error processing

routine, the ON ERROR GOTO command is canceled (interruption canceled).

 The error processing routine can process an error using the RESUME statement and

the error output information (ERR, ERL).

• If a serious error such as "17.800: Motor overload" occurs, the program execution stops.

• The most recently executed "ON ERROR GOTO <label>" statement is valid.

• If an error occurs during an error processing routine, the program will stop.

• "ON ERROR GOTO <label>" statements cannot be used within error processing routines.

SAMPLE

ON ERROR GOTO *ER1

FOR A = 0 TO 9

 P[A+10] = P[A]

NEXT A

*L99: HALT

’ERROR ROUTINE

*ER1:

IF ERR = &H000600CC THEN *NEXT1 · Checks to see if a "Point doesn't

exist" error has occurred.

IF ERR = &H000600CE THEN *NEXT2 · Checks to see if a "Subscript out of

range" error has occurred.

ON ERROR GOTO 0 ················· Displays the error message and stops

the program.

*NEXT1:
 RESUME NEXT ·················· Jumps to the next line after the error

line and resumes program execution.

*NEXT2:
 RESUME *L99 ·················· Jumps to label *L99 and resumes program

execution.

Related commands RESUME

MEMO

ON to GOSUB 8-135

8

A

B

C

D

E

F

G

H

I

J

K

L

M

 68 ON to GOSUB
Executes the subroutine specified by the <expression> value

Format

ON expression GOSUB label 1, label 2...

* GOSUB can also be expressed as "GO SUB".

 Values expressionExpression whose result is 0 or positive integer

 Explanation The <expression> value determines the program's jump destination.

 An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to

<label 2>, etc.

 Likewise, (<expression> value "n" specifies a jump to <label n>.)

 If the <expression> value is "0" or if the <expression> value exceeds the number of

existing labels, no jump occurs, and the next command is executed.

 After executing a jump destination subroutine, the next command after the ON to

GOSUB statement is executed.

SAMPLE

’MAIN ROUTINE

*ST:

ON DI3() GOSUB *SUB1,*SUB2,*SUB3 *SUB1 to *SUB3 are

 executed.

GOTO *ST ····················· Returns to *ST.

HALT

’SUB ROUTINE

*SUB1:

 MOVE P,P10,Z=0

 RETURN

*SUB2:

 DO(30) = 1

 RETURN

*SUB3:

 DO(30) = 0

 RETURN

Related commands GOSUB, RETURN

8-136 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 69 ON to GOTO
Jumps to the label specified by the <expression> value

Format

ON expression GOTO label 1, label 2...

* GOTO can also be expressed as "GO TO".

 Values expressionExpression whose result is 0 or positive integer

 Explanation The <expression> value determines the program's jump destination.

 An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to

<label 2>, etc.

 Likewise, (<expression> value "n" specifies a jump to <label n>.)

 If the <expression> value is "0" or if the <expression> value exceeds the number of

existing labels, no jump occurs, and the next command is executed.

SAMPLE

’MAIN ROUTINE

*ST:

ON DI3() GOTO *L1,*L2,*L3 ··············· J u m p s t o * L 1 t o * L 3 i n

accordance with the DI3()

value.

GOTO *ST ····················· Returns to *ST.

HALT

’SUB ROUTINE

*L1:

 MOVE P,P10,Z=0

 GOTO *ST

*L2:

 DO(30) = 1

 GOTO *ST

*L3:

 DO(30) = 0

 GOTO *ST

Related commands GOTO

ONLINE 8-137

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 ONLINE
Sets the specified communication port to the "online" mode

Format

ONLINE ETH

 CMU

 Explanation Changes the communication mode parameter in order to switch the communication

mode to ONLINE.

 ETH Changes the Ethernet communication mode parameter to

ONLINE and clears the transmission and reception buffers.

 CMU Changes the RS-232C communication mode parameter to

ONLINE, resets the communication error, and clears the

transmission and reception buffers.

 No setting Changes the Ethernet and RS-232C communication mode

parameter to ONLINE, resets the communication error

(RS-232C only), and clears the transmission and reception

buffers.

SAMPLE

OFFLINE

SEND CMU TO A$

SEND CMU TO P10

ONLINE

HALT

8-138 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 71 OPEN
Opens the specified General Ethernet Port

Format

OPEN GPm

 Values m: General Ethernet Port number 0 to 7

 Explanation Opens the communication port of the specified General Ethernet Port.

SAMPLE

OPEN GP1 ····················· Opens the General Ethernet Port 1.

SEND "123" TO GP1 ··············· Sends the character strings "123" from

the General Ethernet Port 1.

SEND GP1 TO A$ ·················· Receives the data from the General

Ethernet Port 1 and Saves the received

data in the variable A$.

CLOSE GP1 Closes the General Ethernet Port 1.

Related commands CLOSE, SEND, SETGEP, GEPSTS

ORD 8-139

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 72 ORD
Acquires a character code

Format

ORD (character string expression)

 Explanation Acquires the character code of the first character in a <character string expression>.

SAMPLE

A=ORD("B") ····················· 66 (=&H42) is assigned to A.

Related commands CHR$

8-140 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 73 ORGORD
Specifies/acquires the robot's return-to-origin sequence

Format

ORGORD [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expressionn to nnnnnn (n : 0 to 6)

 Explanation Sets the axis sequence parameter for return-to-origin and absolute search operation of

the robot specified by the <robot number>.

 The 1 to 6 axes are expressed as "1 to 6" values, respectively, and the <expression>

value must be 1-digit to 6-digit integer.

 The same axis cannot be specified twice.

 After the specified axes are returned to their origin points in sequence, from left to

right, the remaining axes return to their origin points simultaneously.

 If the <expression> value is "0", all axes will be returned to their origin points

simultaneously.

Functions

Format

ORGORD [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Acquires the axis sequence parameter for return-to-origin and absolute search

operation of the robot specified by the <robot number>.

SAMPLE

A=3

ORGORD A ····················· Return-to-origin is executed first for

axis 3 of robot 1.

ORIGIN^ ····················· After the return-to-origin of axis 3 of

robot 1 is completed, return-to-origin

is executed for the remaining axes.

MOVE P,P0

A=ORGORD ····················· Return-to-origin sequence parameter of

robot 1 is assigned to variable A.

HALT

Related commands ORIGIN

ORIGIN 8-141

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 74 ORIGIN
Performs return-to-origin

Format

ORIGIN [robot number], motor type

 Values robot number

motor type

0: all robots

1 to 4: specified robot only

0: all types

1: incremental motor only

2: absolute motor only

9: incomplete return-to-origin axis only

(If omitted, 0 (all types) is specified.)
 Explanation This statement performs return-to-origin of a robot

 If the movement is stopped at an intermediate point, "incomplete return-to-origin"

status will occur.

 If <robot number> is omitted or "0" is specified during multiple robots setting, the

return-to-origin and absolute search are first performed for the robot 1 and then for

the robots 2 to 4.

SAMPLE

ORIGIN 0, 1 ····················· P e r f o r m s r e t u r n - t o - o r i g i n f o r

incremental motor axes only of all

robots.

Related commands ORGORD, MCHREF

8-142 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 75 OUT
Turns ON the specified port output

Format

OUT DOm(b,···,b) ,expression

 DO(mb,···,mb)

 MOm(b,···,b)

 MO(mb,···,mb)

 SOm(b,···,b)

 SO(mb,···,mb)

 LO0(b,···,b)

 LO(0b,···,0b)

 TO0(b,···,b)

 TO(0b,···,0b)

 Values m: port number

b: bit definition

expression

2 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

0 to 3600000 (units: ms)

 Explanation This statement turns ON the specified port output and terminates the command.

(The program proceeds to the next line.) Output to that port is then turned OFF

after the time specified by the <expression> has elapsed. If the operation is stopped

temporarily at an intermediate point and then restarted, that port's output is turned

OFF when the remaining <expression> specified time has elapsed.

 If this <expression> is omitted, the specified port's output remains ON.

 Up to 16 OUT statements using <expressions> can be executed at the same time.

Attempting to execute 17 or more OUT statements will activate error "6.225: No

sufficient memory for OUT".

 If no hardware port exists, nothing is output.

SAMPLE

 OUT DO2(),200 ·················· Turns DO(27 to 20) ON, then turns them

OFF 200ms later.

 OUT DO(37,35,27,20) ············ Turns DO(37, 35, 27, 20) ON.

Related commands DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and
"1" are not allowed at DO,
and SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

OUTPOS 8-143

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 76 OUTPOS
Specifies/acquires the OUT enable position parameter of the robot

Format

1. OUTPOS [robot number] expression

2. OUTPOS [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 9999999 (Unit: pulses)

 Explanation Changes the "OUT position" parameter of the specified axis to the value indicated in

the <expression>.

 Format 1: The change is applied to all axes of the specified robot.

 Format 2: The change is applied only to the axis specified by <axis number>.

Functions

Format

OUTPOS [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the "OUT position" parameter's value for the specified axis.

8-144 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 76 OUTPOS

SAMPLE

’CYCLE WITH DECREASING OUTPOS

DIM SAV(3)

GOSUB *SAVE_OUTPOS

FOR A=1000 TO 10000 STEP 1000

 GOSUB *CHANGE_OUTPOS

 MOVE P,P0

 DO3(0)=1

 MOVE P,P1

 DO3(0)=0

NEXT A

GOSUB *RESTORE_OUTPOS

HALT

*CHANGE_OUTPOS:

 FOR B=1 TO 4

 OUTPOS(B)=A

 NEXT B

 RETURN

*SAVE_OUTPOS:

 FOR B=1 TO 4

 SAV(B-1)=OUTPOS(B)

 NEXT B

 RETURN

*RESTORE_OUTPOS:

 FOR B=1 TO 4

 OUTPOS(B)=SAV(B-1)

 NEXT B

 RETURN

PATH 8-145

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH
Specifies the motion path

Format

PATH [robot number](axis number,...) ● L , point definition , option, option...

 C

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes specifiable

• If not input, all axes are specified.)

 Explanation Sets the motion path for the specified axis. This command can only be executed

between the PATH SET and PATH END commands. If execution is attempted

elsewhere, an error will occur.

 • Movement type: Linear interpolation, circular interpolation

 • Point setting: Direct numeric value input, point definition

 • Options: Speed setting, coordinate plane setting (for circular interpolation

only), port output setting

PATH motion types

 ● Linear interpolation movement
"PATH L…" is set for linear interpolation movement.

 ● Circular interpolation movement
"PATH C…" is set for circular interpolation movement.

Only the X, Y and Z coordinate values of the specified points are valid for PATH motion. Any

other coordinates use the coordinate values of the PATH motion START point.

The motion path can be connected by repeated PATH commands ("PATH L", "PATH C") to

allow movement without stopping.

●

NOTE
 • W h e n " R " a x i s o n l y
i s s p e c i f i e d i n t h e
coord inate a t t r ibu te
parameter, an error will
occur.

8-146 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH

Point data setting types

 ● Direct numeric value input Linear interpolation Circular interpolation

Format

p1 p2 p3 p4 p5 p6 f

 Values p1 to p6Space-separated coordinate values for each axis

 f ...Hand system flag

 Explanation Directly specifies coordinate data by a numeric value. If an integer is used, this

is interpreted as "pulse" units, and if a real number (with decimal point) is used,

this is interpreted as "mm" units. If both integers and real numbers are used

together (mixed), all coordinate values will be handled in "mm" units.

 With this format, only 1 point can be specified as the movement destination

coordinates. The only type of movement specified by this point data setting is linear

interpolation.

 Hand system flags can be specified for SCARA robots when directly specifying the

coordinate data in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If

a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that

there is no hand system flag.

 1 : Right-handed system is used to move to a specified position.

 2 : Left-handed system is used to move to a specified position.

 The same hand system must always be used between a motion path's START and END points.

The hand system cannot be changed between these points.

 Moreover, the first arm and second arm rotation information must be the same

throughout the movement path, from the path's START to END points. The first arm

and second arm rotation information cannot be changed at any point along the path.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

CAUTION
 • The hand system used
during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
The same applies if the
path is to pass through
points where hand system
flags are set. Differ ing
hand systems will cause
an e r ro r and d i sa b le
motion.

 • The first arm and second
arm rotation information
during PATH movement
must be the same as the
first arm and second arm
rotation information at
the PATH movement ' s
START point. If the two are
different, an error will occur
and movement wil l be
disabled.

MEMO

PATH 8-147

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH

SAMPLE

PATH L,10000 10000 1000 1000 0 0

 ····················Sets the linear interpolation movement

path of robot 1 in "pulse" units.

PATH L,150.000 250.000 10.000 30.000 0.000 0.000 1

 ····················The linear interpolation movement path

of robot 1 is set in the coordinate

values specified by the right-handed

system in "mm" units.

 ● Point definition Linear interpolation Circular interpolation

Format

point definition , point definition...

 Explanation Specifies the movement destination as <point expression> value. Two or more

data items can be designated by separating them with a comma (,).

 For circular interpolation movement, 2 points must be specified for each arc.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH L,P1,P2,P3 ···············S p e c i f i e s s e q u e n t i a l l i n e a r

interpolation movement of robot 1 from

its current position to the positions

specified by P1, P2 and P3 from its

current position.

PATH C P5,P6,P7,P8 ············Specifies circular interpolation

movement of robot 1 through the

following points: current position,

P5, P6, and P6, P7, P8.

CAUTION
 • The hand system used
during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
The same applies if the
path is to pass through
points where hand system
flags are set. Differ ing
hand systems will cause
an e r ro r and d i sa b le
motion.

MEMO

CAUTION
 • The first arm and second
arm rotation information
during PATH movement
must be the same as
the first arm and second
arm rotation information
at the PATH movement's
START point. If the two
are different, an error will
occur and movement will
be disabled.

8-148 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH

Option types

 ● Speed setting Linear interpolation Circular interpolation

Format

1. SPEED =expression

2. S =expression

 Values expression1 to 100 (units: %)

 Explanation The program's movement speed is specified as the <expression> value (units: %).

 The actual speed is determined as shown below.

 • Robot's max. speed (mm/sec) × automatic movement speed (%)× program

movement speed (%).

 This option is enabled only for the specified PATH statement.

SAMPLE

PATH L,P5,S=40 ················Movement of robot 1 from its current

position to the position specified by P5

occurs at 40% of the program movement

speed.

Format

VEL =expression

 Values expression The permissible setting range varies according to the

robot type (units: mm/sec).

 Explanation The movement speed is specified by the <expression> value (units: mm/sec). An

error will occur if the speed is too fast.

 This command is enabled only for the specified PATH statement.

SAMPLE

PATH L,P10,VEL=150 ············Movement of robot 1 from its current

position to the position specified by P10

occurs at a speed of 150mm/sec.

NOTE
 • This defines the maximum
speed, and does not
g u a r a n t e e t h a t a l l
movement will occur at
specified speed.

NOTE
 • This option specifies only
the maximum composite
s p e e d a n d d o e s n o t
guarantee movement at
the specified speed.

PATH 8-149

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH

 ● Coordinate plane setting Linear interpolation Circular interpolation

Format

 XY

 YZ

 ZX

 Values XY ..XY coordinate plane

 YZ ..YZ coordinate plane

 ZX ..ZX coordinate plane

 Explanation Specifies the coordinate plane on which to draw a circular arc for circular

interpolation movement. If no coordinate plane is specified, 3-dimensional

circular interpolation movement is used.

 Only circular interpolation movement can be specified by this coordinate plane

setting.

 This command is enabled only for the specified PATH statement.

SAMPLE

PATH C,P1,P2,XY ···············From its current position, circular

interpolation movement of robot 1

occurs within the XY plane, with

the Z-axis moving to the P2 Z-axis

coordinates position.

8-150 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PATH

 ● Port output setting Linear interpolation Circular interpolation

Format 1

 DO m(b,···,b)=expression 1 @ expression 2

 MO

 SO

Format 2

 DO (mb,···,mb)=expression 1 @ expression 2

 MO

 SO

 Values m: port number

b: bit definition

expression 1

expression 2

2 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from

the left in descending order (high to low).

Value which is output to the specified port (only

integers are valid).

Position where the port output occurs. This position

can be specified in "mm" units down to the 3rd decimal

position.

 Explanation During PATH motion, this command option outputs the value of <expression 1>

to the specified port when the robot reaches the <expression 2> distance from the

start position.

 The <expression 2> numeric value represents a circle radius (not arc length)

centered on the movement START point.

 If no hardware port exists, nothing is output.

SAMPLE

PATH SET

PATH L,P1,DO(20)=1@10 ·········Specifies to output "1" to DO(20) at a

10mm radius position from the START

position during linear interpolation

movement of robot 1 from its current

position to P1.

PATH L,P2,DO(21)=1@12.5 ·······Specifies to output "1" to DO(21) at a

12.5mm radius position from P1 during

linear interpolation movement of robot

1 from its current position to P2.

PATH END

PATH START

Related commands PATH SET, PATH END, PATH START

 Reference For PATH function details, refer to Chapter 9 "PATH Statements".

CAUTION
 • Output to ports "0" and "1"
is not allowed at DO, MO,
and SO.

REFERENCE

 • For details regarding bit
definitions, see Chapter 3
"10 Bit Settings".

PATH END 8-151

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 78 PATH END
Ends the path setting

Format

PATH [robot number] END

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Ends the path setting of specified robot's PATH motion.

 The PATH END command must always be paired with a PATH SET command. The

PATH motion path end-point is the final point specified by the final PATH command

(PATH L, PATH C) which exists between the PATH SET and PATH END commands.

 Attempting to execute a PATH END command when no PATH SET command has

been executed will result in an error.

SAMPLE

PATH END ····················Ends the path setting of robot

1's PATH motion

Related commands PATH, PATH SET, PATH START

 Reference For PATH function details, see Chapter 9 "PATH Statements".

8-152 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 79 PATH SET
Starts the path setting

Format

PATH [point definition] SET point definition

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Starts the path setting of specified robot's PATH motion.

 Specifies the <point definition> position as the PATH motion start-point. (This only

sets the PATH motion start point and does not actually begin robot motion.) If the

<point definition> value is omitted, the current robot position is set as the start point.

 However, if robot movement is in progress, the target position of that movement

becomes the start point. (Example: The OUT position range is wider for the MOVE

command which precedes the PATH SET command, so the robot is still moving when

the PATH SET command is executed, etc.)

 The PATH SET command must always be paired with a PATH END.

 When a PATH SET command is executed, the previously set PATH motion path data

is deleted.

 • Point data setting : Direct numeric value input, point definition

NOTE
 • The PATH SET statement
is available in software
version 1.11 onwards.

PATH SET 8-153

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 79 PATH SET

 ● Direct numeric value input

Format

p1 p2 p3 p4 p5 p6 f

 Values p1 to p6Space-separated coordinate values for each axis.

 f ...Hand system flag.

 Explanation Directly specifies the path's start-point coordinates for PATH motion. If an integer

is used, this is interpreted as "pulse" units, and if a real number is used, this is

interpreted as "mm" units (valid down to the 3rd decimal position).

 Hand system flags can be specified for SCARA robots when directly specifying the

coordinate data in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f".

If a number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate

that there is no hand system flag.

 1: Indicates that a right-handed system is specified for the PATH motion's start-point.

 2: Indicates that a left-handed system is specified for the PATH motion's start-point.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH SET 120 250.000 55.2 20.33 0 0

 ····················The PATH motion's start-point of robot

1 is specified in "mm" units as follows:

120.000 250.000 55.200 20.330 0.000

0.000.

PATH SET -51200 80521 7045 204410 0 0

 ····················The PATH motion's start-point of robot

1 is specified in "pulse" units.

NOTE
 • I f b o t h i n t e g e r s a n d
real numbers are used
together (m ixed) , a l l
coordinate values wi l l
be handled in "mm/deg"
units.

CAUTION
 • The hand system used
d u r i n g PAT H m o t i o n
must be the same hand
system as that at the PATH
motion's start-point. An
error will occur if the hand
systems are different.

 • The first arm and second
arm rotation information
during PATH movement
must be the same as the
first arm and second arm
rotation information at
the PATH movement ' s
START point. If the two are
different, an error will occur
and movement wil l be
disabled.

MEMO

8-154 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 79 PATH SET

 ● Point definition

Format

point expression

 Explanation The PATH motion's start-point is specified by the <point expression>.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH SET P10 ··················The PATH motion's start-point of

robot 1 is set as P10.

PATH SET WHERE ················The PATH motion's start-point of

robot1 is set as the robot 1's current

position.

Related commands PATH, PATH END, PATH START

 Reference For PATH function details, see Chapter 9 "PATH Statements".

CAUTION
 • The hand system used
during PATH motion must
be the same as the hand
system used at the path
motion route's start point.
Differ ing hand systems
will cause an error and
disable motion.

MEMO

CAUTION
 • The first arm and second
arm rotation information
during PATH movement
must be the same as
the first arm and second
arm rotation information
at the PATH movement's
START point. If the two
are different, an error will
occur and movement will
be disabled.

PATH START 8-155

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 80 PATH START
Starts the PATH motion

Format

PATH [robot number] START, option, option...

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Starts PATH motion of specified robot.

 Before PATH START can be executed, the PATH motion path must be specified by

the PATH SET command, PATH commands (PATH L, PATH C) and the PATH END

command. The robot must also be positioned at the motion path's start-point which

was specified by the PATH SET command.

 The robot's PATH motion speed is the automatic movement speed (%) which was in

effect when the PATH START was executed, multiplied by the program movement

speed (%) specified by the SPEED command or the (SPEED or S) option of the PATH

command. A speed specified by the "VEL" option of the PATH command does not

rely on the automatic movement speed.

 After PATH motion begins, the PATH START command is terminated when the robot

reaches the PATH motion end-point, or when movement is stopped by a stop input,

etc.

 • Options : STOPON condition setting, CONT setting

8-156 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 80 PATH START

Option types

 ● STOPON condition setting

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression are

met. Because this is a deceleration type stop, there will be some movement (during

deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs,

and the command is terminated.

 This option is only possible by program execution.

SAMPLE

PATH START,STOPON DI(20)=1

 ····················Robot 1 starts PATH movement, if the

"DI (20) = 1" condition is met during

movement, a deceleration and stop

occurs, and the next step is then

executed.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

CAUTION
 • Addition of the STOPON
condition setting disables
the CONT setting.

MEMO

PATH START 8-157

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 80 PATH START

 ● CONT setting

Format

CONT

 Explanation When PATH movement is executed with CONT setting option, after all movable

axes begin to execute the final movement specified by PATH statement, movable

axes will begin to execute the next command without waiting the completion their

movement (entering the tolerance range). If the next command is a movement

command, the 2 movement paths are linked by connecting the deceleration and

acceleration sections, enabling continuous movement without intermediate stops.

 This option is enabled only for the specified PATH START statement.

 ● Caution regarding PATH START command with CONT setting:
If the next command following the PATH START command with CONT setting is an executable

command such as a signal output command, that next command will start immediately after

axis movement begins. In other words, that next command starts before the axis arrives within

the target position tolerance range.

Example:

Signal output (DO, etc.) Signal is output immediately after movement along the final path begins.

DELAY DELAY command is executed and standby starts immediately after
movement along the final path begins.

HALT Program stops and is reset immediately after movement along the final path
begins. Therefore, axis movement also stops.

HALTALL
All programs in execution stop immediately after movement along the
final path begins, task 1 is reset, and other tasks terminate. Therefore, the
movement also stops.

 HOLD Program temporarily stops immediately after movement along the final path
begins. Therefore, axis movement also stops.

HOLDALL All programs in execution temporarily stop immediately after movement
along the final path begins. Therefore, the movement also stops.

WAIT WAIT command is executed immediately after movement along the final
path begins.

P1

PATH START command

DO(20) turns ON

PATH START,
CONT
DO(20)=1

DO(20) turns ON

PATH START
DO(20)=1

Tolerance

Final target position

33808-R9-00

NOTE
 • The CONT sett ing can
b e u s e d t o r e d u c e
the movement S TAR T
posit ioning t ime.

 • The path to the target
point is not guaranteed.

8-158 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 80 PATH START

SAMPLE

PATH START,CONT

MOVE P,P10

 ····················PATH motion starts, and movement to

P10 begins after the moving axes enter

the deceleration zone of final PATH

motion.

SAMPLE:PATH START, CONT

PATH motion
target position

PATH motion
target position

P10

Next movement begins after
entering the deceleration zones

P10

Next movement begins after
entering the tolerance range

Tolerance range

Deceleration zones

With CONT setting:

Without CONT setting:

33812-R9-00

Related commands PATH, PATH SET, PATH END

 Reference For PATH function details, see Chapter 9 "PATH Statements".

PDEF 8-159

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 81 PDEF
Defines the pallet

Format

PDEF(Pallet definition number) =expression 1, expression 2

, expression 3, point definition

 Values Pallet definition number

expression 1

expression 2

expression 3

point definition

0 to 39

Number of elements (NX) between P[1] and P[2].

Number of elements (NY) between P[1] and P[3].

Number of elements (NZ) between P[1] and P[5].

 Total number of elements: must be 32767 or less

<expression 1> × <expression 2> × <expression 3>

 P[1] to P[5] definition: see the figure below.

 The point used for a pallet definition. Continuous 5

points starting with the specified point are used.

 Explanation Defines the pallets to permit execution of the pallet movement command: changes

the contents of definition for previously defined pallet data.

 After specifying the number of points per axis, the equally-spaced points for each axis

are automatically calculated and defined in the sequence shown in the figure below.

 If <expression 3> (Z-axis direction) is omitted, the value becomes "1".

 The total number of elemnts defined for a single pallet must not exceed 32,767.

Automatic point calculation

P[5]

P[3] P[4]

P[2]P[1]
NX

NY

4

7
10

1

16

19
22

13

2

5

8
11

3

6

9
12

14

17

20
23

15

18

21

24

NZ

NY

33815-R7-00

SAMPLE

PDEF（1（=3,4,2,P3991 ············· Pallet definition 1 is defined as 3 x 4

x 2 by using P3991 to P3995.

8-160 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 82 PGMTSK
Acquires the task number in which a specified program is registered

Format

PGMTSK (program number)

 Values program number1 to 100

 Explanation Acquires the task number in which the program specified by <program number> is

registered.

• If the program number which is not registered in the task is specified, "3.203: Program doesn't exist"

error occurs

SAMPLE

A = PGMTSK(1) Assigns the task number in which

the program number 1's program is

registered to variable A.

Related commands PGN, TSKPGM

MEMO

PGN 8-161

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 83 PGN
Acquires the program number from a specified program name

Format

PGN ("program name")

 Values program name32 characters or less

 consisting of alphanumeric characters and underscore (_)

 Explanation Acquires the program number of the program specified by <program name>.

 The program name must be enclosed in double quotation marks (").

SAMPLE

A = PGN("PG_SUB") ··············· The program number of PG_SUB is

assigned to variable A.

Related commands PGMTSK, TSKPGM

8-162 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 84 PMOVE
Executes a pallet movement command for the robot

Format

PMOVE [robot number] (pallet definition number,

pallet position number),option, option...

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 pallet definition number0 to 39

 pallet position number1 to 32767

 Explanation Executes "pallet move" command of the specified axes. (The specified pallet numbers

must be registered in advance.)

 It is not enabled for axes of other robots or for auxiliary axes.

 • Movement type: PTP

 • Pallet definition number: Numeric expression

 • Pallet position number: Numeric expression

 • Options: Speed setting, arch motion setting,

 STOPON condition setting

 The position numbers for each pallet definition are shown below.

NX*NY*(NZ-1)+1 NX*NY*(NZ-1)+NZ

Position numbers for each pallet definition

P[5]

1 2 NX

NX*2NX+1

NX*(NY-1)+1 NX*NY

NX*NY*NZ

...

P[3] P[4]

P[2]

P[1]

NZ

NX

NY

NX*NY*(NZ-1)+1 NX*NY*(NZ-1)+NZ

33816-R7-00

• Acquires the XYZ axes move to the position determined by calculated values, the R attribute

axis moves to the position specified by pallet point data P [1].

Options PTP Remarks
Speed setting (SPEED) Enabled only for specified PMOVE statement
Arch motion Enabled only for specified PMOVE statement
STOPON condition setting Enabled only by program execution

SAMPLE

PMOVE(1,16) ····················· Robot 1 moves from its current position

to the position specified by pallet

position number 16 of pallet definition

number 1.

MEMO

PMOVE 8-163

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 84 PMOVE

Movement type

 ● PTP (point-to-point) movement
PTP movement begins after positioning of all movement axes is complete (within the tolerance

range), and the command terminates when the movement axes enter the OUT position range.

Although the movement axes reach their target positions simultaneously, their paths are not

guaranteed.

 ● Caution regarding commands which follow the PMOVE command:
If the next command following the PMOVE command is an executable command such as a

signal output command, that next command will start when the movement axis enters the OUT

position range. In other words, that next command starts before the axis arrives within the

target position OUT position range.

Example:

Signal output (DO, etc.) Signal is output when the axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when the axis enters the
OUT position range.

HALT Program stops and is reset when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HALTALL All programs in execution stop when axis enters the OUT position range, task
1 is reset, and other tasks terminate. Therefore, the movement also stops.

 HOLD Program temporarily stops when the axis enters the OUT position range.
Therefore, the axis movement also stops.

HOLDALL All programs in execution temporarily stop when the axis enters the OUT
position range. Therefore, the movement also stops.

WAIT WAIT command is executed when the axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the

tolerance range.

P1

PMOVE command

DO(20) turns ON

PMOVE(0,1)
WAIT ARM
DO(20)=1

DO(20) turns ON

PMOVE(0,1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

PMOVE(0,1)
WAIT ARM
HOLD

PMOVE(0,1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

33827-R7-00

8-164 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 84 PMOVE

Option types

 ● Speed setting PTP

Format

1. SPEED =expression

2. S =expression

 Values expression1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>. The movement speed is the

automatic movement speed multiplied by the program movement speed.

 This option is enabled only for the specified PMOVE statement.

SAMPLE

PMOVE(1,3),S=10 Robot 1 moves from its current position

to the position specified by pallet

position number 3 of pallet definition

number 1, at 10% of the program speed.

 ● Arch motion setting PTP

Format

x =expression, x =expression...

 Values x ..

expression

Specifies the Z,R,A,B axis.

 An integer value is processed in "pulse" units.

 A real number (with decimal point) is process

in "mm/deg" units.

 Explanation 1. The "x" specified axis begins moving toward the position specified by the

<expression> ("1" shown in the figure below).

 2. When the axis specified by "x" moves the arch distance 1 or more, other axes

move to their target positions ("2" shown in the figure below).

 3. The axis specified by "x" moves to the target position so that the remaining

movement distance becomes the arch distance 2 when the movement of other

axes is completed ("3" shown in the figure below).

 4. The command ends when all axis enter the OUT position range.

SAMPLE

PMOVE(1,A),Z=0 First the Z-axis of robot 1 moves from the current

position to the "0 pulse" position. Then the other

axes of robot 1 move to the position specified by

pallet position number A of pallet definition number

1. Finally the Z-axis of robot 1 moves to the

position specified by pallet position number A.

NOTE
 • This option specifies only
t h e ma x i mu m s p e e d
and does not guarantee
m o v e m e n t a t t h e
specified speed.

PMOVE 8-165

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 84 PMOVE

SAMPLE: PMOVE Z

Target positionCurrent position

1. Z-axis movement 3. Z-axis movement

2. Other axes movement

Arch distance 1
Arch distance 2

Z=0

33704-R9-00

 ● STOPON condition setting PTP

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression are

met. Because this is a deceleration type stop, there will be some movement (during

deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs,

and the command is terminated.

 This option is only possible by program execution.

SAMPLE

PMOVE(A,16),STOPON DI(20)=1

 ····················Robot 1 moves from the current

position to the position specified by

pallet position number 16 of pallet

definition number A, then decelerates

and stops when the condition "DI(20) =

1" is met.

• When the conditional expression used to designate the STOPON condition is a numeric

expression, expression value other than “0” indicates a TRUE status, and “0” indicates a FALSE

status.

MEMO

8-166 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 85 Pn
Defines points within a program

Format

LET Pn = p1 p2 p3 p4 p5 p6 f

 Values n ..Point number: 0 to 29999.

 p1 to p6Point data: the range varies according to the format.

 f ...Hand system flag: 1 or 2.

 Explanation Defines the point data.

1. "n" indicates the point number.

2. Input data for "p1" to "p6" must be separated with a space (blank).

3. If all input data for "p1" to "p6" are integers (no decimal points), the movement

units are viewed as "pulses". "p1" through "p6" then correspond to axis 1 through

axis 6.

4. If there is even 1 real number (with decimal point) in the input data for "p1"

through "p6", the movement units are recognized as "mm".

5. The input data ranges are as follows:

 For "pulse" units: -6,144,000 to 6,144,000 range

 For "mm" units: -99,999.99 to 99,999.99 range

 Hand system flags can be specified for SCARA robots when specifying point definition

data in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a

number other than 1 or 2 is set, or if no number is designated, 0 will be set, indicating

that there is no hand system flag.

1: Indicates a right-handed system point setting.

2: Indicates a left-handed system point setting.

NOTE
 • I f b o t h i n t e g e r s a n d
real numbers are used
together (m ixed) , a l l
coordinate values wi l l
be handled in "mm/deg"
units.

Pn 8-167

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 85 Pn

SAMPLE

P1 = 0 0 0 0 0 0

P2 = 100.000 200.000 50.000 0.000 0.000 0.000

P3 = 10.000 0.000 0.000 0.000 0.000 0.000

P10= P2

FOR A=10 TO 15

 P[A+1]=P[A]+P3

NEXT A

FOR A=10 TO 16

 MOVE P,P1,P[A]

NEXT A

HALT

Related commands Point assignment statement (LET)

NOTE
 • A l l i n p u t v a l u e s a r e
handled as constants.

 • I f c o n t r o l l e r p o w e r
i s t u r n e d o f f d u r i n g
execut ion o f a po in t
definition statement, a
memor y- re lated er ror
such as "9.702: Point data
destroyed" may occur.

8-168 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 86 PPNT
Creates pallet point data

Format

PPNT(pallet definition number,pallet position number)

 Explanation Creates the point data specified by the pallet definition number and the pallet position

number.

SAMPLE

P10=PPNT(1,24) ·················· Creates, at P10, the point data

specified by pallet position number 24

of pallet definition number 1.

Related commands PDEF, PMOVE

PRINT 8-169

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 87 PRINT
Displays the specified expression value at the programming box

Format

PRINT expression , expression... ,

 ; ;

 Values expressioncharacter string, numeric value, variable

 Explanation Displays a specified variable on the programming box screen.

 Output definitions are as follows:

1. If numbers or character strings are specified in an <expression>, they display as

they are. If variables or arrays are specified, the values assigned to the specified

variables or arrays display.

2 If no <expression> is specified, only a line-feed occurs.

3. If the data length exceeds the screen width, a line-feed occurs, and the data is

displayed on the next line.

4. If a comma (,) is used as a display delimiter, a space (blank) is inserted between

the displayed items.

5. If a semicolon (;) is used as a display delimiter, the displayed items appear in

succession without being separated.

6. If the data ends with a delimiter, a line-feed does not occur. When not ended with

a display delimiter, a line-feed occurs.

• Data communication to the programming box screen occurs in order for the PRINT statement

to be displayed there. Therefore, program execution may be delayed when several PRINT

statements are executed consecutively.

• On the programming box, the PRINT statement is displayed on "Message" space in "Automatic

Operation (ALL TASK) screen.

SAMPLE

PRINT A ····················· Displays the value of variable A.

PRINT "A1 =";A1 ················ Displays the value of variable A1 after

"A1 =".

PRINT "B(0),B(1) = ";B(0);",";B(1)

PRINT P100 ····················· Displays the P100 value.

Related commands INPUT

MEMO

8-170 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 88 PSHFRC
Specifies/acquires the pushing force parameter

Format

1. PSHFRC [robot number] expression

2. PSHFRC [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression-1000 to 1000 (unit: %)

 Explanation Changes the "push force" parameter of the specified axis to the value of <expression>.

 If the "F" option is omitted in the PUSH statement, the pushing control is executed

with the setting of the pushing thrust parameter.

 Actual pushing thrust is as follows.

 • Rated thrust x <expression> / 100

 In format 1, the change occurs at all axes.

 In format 2, the change occurs at parameter of the axis specified by the <axis

number>.

SAMPLE

PSHFRC (1) = 10 ················· Changes the pushing thrust parameter

of axis 1 of robot 1 to 10%.

Functions

Format

PSHFRC [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the value of "push force" parameter of the specified axis.

SAMPLE

A=PSHFRC (1) ···················· The pushing thrust parameter of axis 1

of robot 1 is assigned to variable A.

PSHJGSP 8-171

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 89 PSHJGSP
Specifies/acquires the push judge speed parameter

Format

1. PSHJGSP [robot number] expression

2. PSHJGSP [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression0: Invalid, 1 to 100 (units: %)

 Explanation Changes the "push judge speed" parameter of the specified axis to the value of the

<expression>.

 If the push judge speed parameter is enabled, a pushing operation is detected only

when the movement speed is below <expression> with the pushing thrust in the

PUSH statement at the specified value.

 The setting of <expression> can be specified as follows.

 0: A pushing operation is detected if the pushing thrust reaches the specified value

with the threshold setting invalid.

 1 to 100: The movement speed in the PUSH statement is 100% to specify thresholds

with a rate.

SAMPLE

PSHJGSP (1) = 50 ················ Changes the push judge speed parameter

of axis 1 of robot 1 to 50%.

Functions

Format

PSHJGSP [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the value of "push judge speed" parameter of the axis specified by <axis

number>.

SAMPLE

A=PSHJGSP (1) ··················· The pushing detection speed threshold

parameter of axis 1 of robot 1 is

assigned to variable A.

8-172 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 90 PSHMTD
Specifies/acquires a pushing type parameter

Format

1. PSHMTD [robot number] expression

2. PSHMTD [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression0: Totalizing method, 1: Resetting method

 Explanation Changes the "push method" parameter of the specified axis to the value of the

<expression>.

 The pushing type in the PUSH statement can be specified as follows by the

<expression>.

 0: The time for the pushing thrust to reach the specified value is totalized to execute

 the pushing control end detection.

 1: The pushing control end detection is executed only when the pushing thrust

 continuously reaches the specified value. If the pushing thrust is lower than the

 specified value, the elapsed time is reset to 0.

 In format 1, the change occurs at all axes.

 In format 2, the change occurs at the parameter of the axis specified by <axis

number>.

SAMPLE

PSHMTD (1) = 1 ·················· Changes the push method parameter of

axis 1 of robot 1 to the resetting

method.

Functions

Format

PSHMTD [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the value of "push method" parameter of the axis specified by <axis

number>.

SAMPLE

A=PSHMTD (1) ···················· The pushing method parameter of axis 1

of robot 1 is assigned to variable A.

PSHRSLT 8-173

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 91 PSHRSLT
Acquires the status when PUSH statement ends

Format

PSHRSLT [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the end status of PUSH statement executed for the axis specified by <axis

number>.

 0 The PUSH statement was ended for a reason other than the arrival of the

pushing time.

 1 The PUSH statement was ended by the arrival of the pushing time.

SAMPLE

PUSH(3,P1) ····················· Moves the axis 3 of robot 1 is under

the pushing control to the position

specified with P1.

IF PSHRSLT(3) = 1 THEN ·········· Ended by the arrival of the pushing

time.

GOTO *OK

ELSE ····················· Ended for a reason other than the

arrival of the pushing time.

GOTO *NG

ENDIF

8-174 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 92 PSHSPD
Specifies/acquires the push speed parameter

Format

1. PSHSPD [robot number] expression

2. PSHSPD [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 100 (units: %)

 Explanation Changes the "push speed" parameter of the axis specified by <robot number> to the

value indicated in <expression>.

 The motion speed in the PUSH statement is as follows.

 • Neither "S" nor "DS" is set as an option in the PUSH statement:

 Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)

 x Automatic movement speed (%) x Program movement speed (%)

 • "S" is set as an option in the PUSH statement:

 Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)

 x Automatic movement speed (%) x Program movement speed specified by S (%)

 • "DS" is set as an option in the PUSH statement:

 Maximum speed of a robot (mm/sec. or deg./sec.) x Push speed ratio (%)

 x Movement speed of an axis specified by DS (%)

 * Refer to ("94 PUSH" in this Chapter/ the YRCX programming manual) for details

regarding the option settings of the PUSH statement.

SAMPLE

PSHSPD (1) = 50 ················· Changes the push speed parameter of

axis 1 of robot 1 to 50%.

Functions

Format

PSHSPD [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the "push speed" parameter value of the axis specified by <axis number>.

SAMPLE

A=PSHSPD (1) ···················· The push speed parameter of axis 1 of

robot 1 is assigned to variable A.

PSHTIME 8-175

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 93 PSHTIME
Specifies/acquires the push time parameter

Format

1. PSHTIME [robot number] expression

2. PSHTIME [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 32767 (unit: ms)

 Explanation Changes the "push time" parameter of the specified axis to the value indicated in

<expression>.

 If the TIM option is omitted in the PUSH statement, the pushing control is executed

with the setting of the push time parameter.

 In format 1, the change occurs at all axes.

 In format 2, the change occurs at the axis specified by the <axis number>.

SAMPLE

PSHTIME (1) = 1000 ·············· Changes the push time parameter of

axis 1 of robot 1 to 1000ms

Functions

Format

PSHTIME [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the value of "push time" parameter of the axis specified by the <axis

number>.

SAMPLE

A=PSHTIME (1) ··················· The push time parameter of axis 1 of

robot 1 is assigned to variable A.

8-176 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 PUSH
Executes a pushing operation for specified axes

Format

PUSH [robot number](axis number, expression), option, option

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expressionMotor position (mm, degree, pulse) or point expression

 Explanation Executes an absolute position movement of the specified axis with controlling the

pushing thrust in the forwarding direction.

 • Movement type : Pushing PTP movement of specified axis

 • Point data setting : Direct coordinate data input, point definition

 • Options : Pushing thrust setting, pushing time, pushing speed setting,

STOPON setting

Movement type

 ● PTP (point-to-point) of specified axis
PTP movement begins after the operation of the axis specified by the <axis number> is

completed (within the tolerance range), controlling the pushing thrust in the forwarding

direction of the axis.

The conditions to start the pushing control are as follows.

• Immediately after the start of movement of an axis by the PUSH statement

• After the merge operation is completed (when the PUSH statement is specified in the line

next to the movement command with CONT specified)

The conditions to terminate the command are as follows.

• The axis arrives within the tolerance range of the target position.

• The status where the pushing thrust of the axis reaches <pushing thrust value> elapses the

time specified to <pushing time value>.

The end status for the PUSH statement can be confirmed with the PSHRSLT statement.

The conditions to cancel the pushing thrust are as follows.

• When a movement command is executed after the PUSH command including STOP is

finished

• When a servo off occurs

• When the power source to the controller is interrupted and restarted

PUSH 8-177

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 PUSH

If the next command following to the PUSH statement is an executable command such as a

signal output command, the next command will start when the pushing conditions of an axis to

be moved are satisfied, or when an axis arrives within the tolerance range of the target position.

Example:

Signal output (DO, etc.) Signal is output when the pushing conditions are satisfied or within the
tolerance range.

DELAY DELAY command is executed and standby starts, when the pushing
conditions are satisfied or within the tolerance range.

HALT Program stops and is reset when the axis enters the OUT position
range. Therefore, the axis movement also stops.

HALTALL
When the pushing conditions are satisfied or within the tolerance range,
the programs in execution are all stopped, task 1 is reset, and other
tasks are terminated. Therefore, the axis movement also stops.

 HOLD Program temporarily stops when the axis enters the OUT position
range. Therefore, the axis movement also stops.

HOLDALL
When the pushing conditions are satisfied or within the tolerance range,
the programs in execution are all temporarily stopped. Therefore, the
axis movement also stops.

WAIT WAIT command is executed, when the pushing conditions are satisfied
or within the tolerance range.

SAMPLE

PUSH(1,P0) ····················Axis 1 of robot 1 moves from its current position

to the position specified by P0.

Point data setting types

 ● Direct numeric value input
The motor position is specified directly in <expression>.

If the motor position's numeric value is an integer, this is interpreted as a "pulse" unit. If the

motor position's numeric value is a real number, this is interpreted as a "mm/degrees" unit, and

each axis will move from the 0-pulse position to a pulse-converted position.

 SAMPLE

PUSH(1,10000) ·················Axis 1 of robot 1 moves from its current position

to the 100000 pulse position.

PUSH[2](2,90.000) ·············Axis 2 of robot 2 moves from its current

position to the 90° position (when axis 2 is a

rotating axis.)

 ● Point definition
Point data is specified in <expression>. The axis data specified by the <axis number> is used. If

the point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse

position to the pulse-converted position.

SAMPLE

PUSH(1,P1) ····················Axis 1 of robot 1 moves from its current position to

the position specified by P1.

PUSH[2](2,P90) ················Axis 2 of robot 2 moves from its current position to

the position specified by P90 (deg.) (when axis 2 is

a rotating axis.)

8-178 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 PUSH

Option types

 ● Pushing thrust setting

Format

F =expression

 Values expression-1000 to 1000 (units: %)

 Explanation The pushing thrust in the forwarding direction of an axis is specified as an

<expression>.

 The actual pushing thrust is determined as shown below.

 • Rated thrust x <expression>/100

 If <expression> is omitted, pushing thrust value specified with the parameter is

used.

SAMPLE

PUSH(1,10000),F=10 ············Axis 1 of robot 1 moves from its

current position to the 100000 pulse

position with the pushing thrust at

10% of the rated thrust.

 ● Pushing time setting

Format

TIM =expression

 Values expression1 to 32767 (units: ms)

 Explanation The time to keep pushing with the specified pushing thrust is specified as an

<expression>.

 When the status where the pushing thrust reaches the specified value exceeds

<expression>, the PUSH statement terminates.

 If this option is omitted, the setting of the parameter is used.

SAMPLE

PUSH(1,10000),TIM=5000 ··········Axis 1 of robot 1 moves from its

current position to the 100000 pulse

position with keeping pushing for 5

seconds.

PUSH 8-179

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 PUSH

 ● Speed setting

Format

1. SPEED =expression

2. S =expression

 Values expression1 to 100 (units: %)

 Explanation The program movement speed is specified in <expression>.

 The actual speed is determined as shown below.

 • Max. speed of a robot (mm/s or deg./s) x Pushing movement speed (%) x

automatic. movement speed (%) x <expression> (%)

 This option is enabled only for the specified PUSH statement.

SAMPLE

PUSH(1,10000),S=10 ············Axis 1 robot 1 moves from its

current position to the 100000 pulse

position with the speed at 10% of the

multiplication of the pushing movement

speed and the automatic movement

speed.

Format

1. DSPEED =expression

2. DS =expression

 Values expression0.01 to 100.00 (units: %)

 Explanation The axis movement speed is specified in <expression>.

 The actual speed is determined as shown below.

 • Max. speed of a robot (mm/s or deg./s) x Pushing movement speed (%) x

<expression> (%)

 This option is enabled only for the specified PUSH statement.

 • Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

SAMPLE

PUSH(1,10000),DS=0.1 ··········Axis 1 moves of robot 1 from its

current position to the 100000 pulse

position with the speed at 0.1% of the

pushing movement speed.

8-180 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 PUSH

 ● STOPON conditions setting

Format

STOPON conditional expression

 Explanation Stops movement when the conditions specified by the conditional expression

are met. Because this is a deceleration type stop, there will be some movement

(during deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs,

and the command is terminated.

 This option is enabled only by program execution.

SAMPLE

PUSH(1,10000),STOPON DI(20) = 1

（ ····················Axis 1 of robot 1 moves from its current

position toward the "10000 pulses"

position and stops at an intermediate

point if the "DI (20) = 1" condition is

met. The next step is then executed.

• When the conditional expression used to designate the STOPON conditions is a numeric

expression, an expression value other than “0” indicates a TRUE status, and “0” indicates a

FALSE status.

Related commands PSHFRC, PSHTIME, PSHMTD, PSHSPD, PSHRSLT, CURTRQ, CURTQST

MEMO

RADDEG 8-181

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 95 RADDEG
Performs a unit conversion (radians → degrees)

Format

RADDEG(expression)

 Values expressionAngle (units: radians)

 Explanation Converts the <expression> value to degrees.

SAMPLE

LOC4(P0)=RADDEG(ATN(B)) ········· Converts the variable B arctangent

value to degrees, and assigns it to

4th-axis data of P0.

Related commands ATN, COS, DEGRAD, SIN, TAN

8-182 Chapter 8 Robot Language Lists

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 96 REM
Inserts a comment

Format

1. REM character string

2. ' character string

 Explanation All characters which follow REM or an apostrophe (') are handled as a comment. This

comment statement is used only to insert comments in the program, and it does not

execute any command. REM or an apostrophe (') can be entered at any point in the

line.

SAMPLE

REM *** MAIN PROGRAM ***

 ’*** SUBROUTINE ***

HALT ’HALT COMMAND

RESET 8-183

88

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 97 RESET
Turns OFF the bits of specified ports, or clears variables

Format 1

RESET DOm(b,···,b)

 DO(mb,···,mb)

 MOm(b,···,b)

 MO(mb,···,mb)

 TOn(b,···,b)

 TO(n-b,···,nb)

 LOn(b,···,b)

 LO(nb,···,nb)

 SOm(b,···,b)

 SO(mb,···,mb)

Format 2

RESET TCOUNTER

 Values m: port number

n: port number

b: bit definition

2 to 7, 10 to 17, 20 to 27

0, 1

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Format 1: Turns the bits of specified ports OFF.

 Format 2: Clears the 1ms counter variables (1ms counter variables are used to

measure the time in 1ms units).

SAMPLE

 RESET DO2() ···················· Turns OFF DO(27 to 20).

 RESET DO2(6,5,1) ·············· Turns OFF DO(26, 25, 21).

 RESET (37,35,27,20) ············ Turns OFF DO(37, 35, 27, 20).

 RESET TCOUNTER ················· Clears the 1ms counter variables.

Related commands SET, DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and "1"
is not allowed at DO, and
SO.

REFERENCE

 • For details regarding bit
definitions, see Chapter 3
"10 Bit Settings".

8

8-184 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 98 RESTART
Restarts another task during a temporary stop

Format

RESTART Tn

 <program name>

 PGm

 Values n: Task number1 to 16

● ● m: Program number1 to 100

 Explanation Restarts another task that has been temporarily stopped (SUSPEND status).

 A task can be specified by the name or the number of a program in execution.

 The program name must be enclosed in < > (angle brackets).

• If a task (program) not temporarily stopped is specified and executed, an error occurs.

SAMPLE

START <SUB_PGM>,T2

 FLAG=1

*L0:

 IF FLAG=1 AND DI2(0)=1 THEN

 SUSPEND T2

 FLAG=2

 WAIT DI2(0)=0

 ENDIF

 IF FLAG=2 AND DI2(0)=1 THEN

 RESTART T2

 FLAG=1

 WAIT DI2(1)=0

 ENDIF

 MOVE P,P0

 MOVE P,P1

 GOTO *L0

 HALTALL

Program name:SUB_PGM

’SUBTASK ROUTINE

*SUBTASK:

 DO2(0)=1

 DELAY 1000

 DO2(0)=0

 DELAY 1000

 GOTO *SUBPGM

 EXIT TASK

Related commands CUT, EXIT TASK, START, SUSPEND

 Reference For details, refer to the "Multi-Task" item.

MEMO

8

RESUME 8-185

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 99 RESUME
Resumes program execution after error recovery processing

Format

1. RESUME

2. RESUME NEXT

3. RESUME label

 Explanation Resumes program execution after recovery from an error.

 Depending on its location, a program can be resumed in the following 3 ways:

1. RESUME The program resumes from the command which caused the

error.

2. RESUME NEXT The program resumes from the next command after the

command which caused the error.

3. RESUME label The program resumes from the command specified by the

<label>.

• The RESUME statement can also be executed in an error processing routine.

• Error recovery processing is not possible for serious errors such as "17.800 : Motor overload".

Related commands ON ERROR GOTO

REFERENCE

 • For details, refer to "67 ON
ERROR GOTO".

MEMO

8

8-186 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 100 RETURN
Processing which was branched by GOSUB, is returned to the next line after GOSUB

Format

GOSUB label * GOSUB can also be expressed as "GO SUB".

 :

label:

 :

RETURN

 Explanation Ends the subroutine and returns to the next line after the jump source GOSUB

statement.

 All subroutines (jump destinations) specified by a GOSUB statement must end with a

RETURN statement. Using the GOTO statement, etc., to jump from a subroutine will

cause an error such as "5.212: Stack overflow".

SAMPLE

*ST:

 MOVE P,P0

 GOSUB *CLOSEHAND

 MOVE P,P1

 GOSUB *OPENHAND

GOTO *ST

HALT

’SUB ROUTINE

*CLOSEHAND:

 DO(20) = 1

RETURN

*OPENHAND:

 DO(20) = 0

RETURN

Related commands GOSUB

8

RIGHT$ 8-187

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 101 RIGHT$
Extracts a character string from the right end of another character string

Format

RIGHT$(character string expression, expression)

 Values expression0 to 255

 Explanation This function extracts a character string with the digits specified by the <expression>

from the right end of the character string specified by <character string expression>.

 The <expression> value must be between 0 and 255, otherwise an error will occur.

 If the <expression> value is 0, then extracted character string will be a null string

(empty character string).

 If the <expression> value has more characters than the <character string expression>,

extracted character string will become the same as the <character string expression>.

SAMPLE

B$=RIGHT$(A$,4) ················· 4 characters from the right end of A$

are assigned to B$.

Related commands LEFT$, MID$

8

8-188 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 102 RIGHTY
Sets the SCARA robot hand system as a right-handed system

Format

RIGHTY [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Specifies the robot as a roght-handed system. The robot moves to a point specified in

the Cartesian coordinates.

 This statement only selects the hand system, and does not move the robot. If

executed while the robot arm is moving, execution waits until movement is complete

(positioned within tolerance range).

SAMPLE

RIGHTY ····················· Specifies a Robot 1 “right-handed

system” setting.(see Fig.1 below).

MOVE P,P1

LEFTY ····················· Specifies a Robot 1 “left-handed

system” setting.(see Fig.2 below).

MOVE P,P1

RIGHTY

HALT

SAMPLE:LEFTY/RIGHTY

P1

(1)(2)

Left-handed system Right-handed system

SCARA robot

33818-R7-00

Related commands LEFTY

8

RSHIFT 8-189

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 103 RSHIFT
Shifts a bit value to the right

Format

RSHIFT(expression 1, expression 2)

 Explanation Shifts the <expression 1> bit value to the right by the amount of <expression 2>.

Spaces left blank by the shift are filled with zeros (0).

SAMPLE

A=RSHIFT(&B10111011,2) ·········· The 2-bit-right-shifted &B10111011

value (&B00101110) is assigned to A.

Related commands LSHIFT

8

8-190 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 104 SELECT CASE to END SELECT
Executes the specified command block in accordance with the <expression> value

Format

SELECT CASE expression

 CASE expression list 1

 command block 1

 CASE expression list 2

 command block 2

 :

 CASE ELSE

 command block n

END SELECT

 Explanation These statements execute multiple command blocks in accordance with the

<expression> value. The setting method is as follows.

1. The <expression list> following CASE statement comprises multiple numerical

expressions and character expressions separated from each other by a comma (,).

2. If the <expression> value matches one of expressions contained in the

<expression list>, the specified command block is executed. After executing the

command block, the program jumps to the next command which follows the

END SELECT statement.

3. If the <expression> value does not match any of the expressions contained in the

<expression list>, the command block indicated after the CASE ELSE statement

is executed. After executing the command block, the program jumps to the next

command which follows the END SELECT statement.

4. If the <expression> value does not match any of the expressions contained in

<expression list> and no CASE ELSE statement exists, the program jumps to the

next command following the END SELECT statement.

SAMPLE

WHILE -1

SELECT CASE DI3()

 CASE 1,2,3

 CALL *EXEC(1,10)

 CASE 4,5,6,7,8,9,10

 CALL *EXEC(11,20)

 CASE ELSE

 CALL *EXEC(21,30)

END SELECT

WEND

HALT

8

SEND 8-191

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 105 SEND
Sends readout file data to the write file

Format

SEND read-out file TO write file

 Explanation Sends <read-out file> data to the <write file>.

 An entire DO, MO, TO, LO, SO, or SOW port (DO(), MO(), etc.), cannot be specified

as a write file.

 Moreover, some individual files (DOn(), MOn(), etc.) cannot be specified as a write

file. For details, refer to Chapter 10 "Data file description".

 Writing to read-only files (indicated by a "--" in the "Write" column of the table shown

below) is not permitted.

 Even if the read-out/write files are specified correctly, it may not be possible to

execute them if there is a data format mismatch between the files.

Type File Name
Definition Format Read-

out Write
All Individual File

User All file ALL --------------- 3 3

Program PGM <bbbbbbbb>
PGn 3 3

Point PNT Pn 3 3

Point comment PCM PCn 3 3

Point name PNM PNn 3 3

Parameter
PRM

/cccccccc/
#cccccccc#
\cccccccc\

3 3

Shift definition SFT Sn 3 3

Hand definition HND Hn 3 3

Pallet definition PLT PLn 3 3

General Ethernet Port GEP GPn 3 3

Input/output name ION iNMn(n) 3 3

Area check output ACO ACn 3 3

Variable,
Constant

Variable VAR ab...by 3 3

Array variable ARY ab...by(x) 3 3

Constant ---------- “cc...c” 3 -

Status Program directory DIR <<bbbbbbbb>> 3 -

Parameter directory DPM --------------- 3 -

Machine reference
sensor, stroke-end MRF --------------- 3 -

mark ARP --------------- 3 -

System configuration information CFG --------------- 3 -

Version information VER --------------- 3 -

Option board OPT --------------- 3 -

Self check SCK --------------- 3 -

Alarm history LOG --------------- 3 -

Remaining memory size MEM --------------- 3 -

NOTE
 • Examples of erroneous
writing to a read-only file:

 SEND CMU TO DIR

 SEND PNT TO SI()

 • Examples of data format
mismatches:

 SEND PGM TO PNT

 SEND SI() TO SFT

8

8-192 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

8

8-192 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Type File Name
Definition Format Read-

out Write
All Individual File

Device DI port DI() DIn() 3 -

DO port DO() DOn() 3 3

MO port MO() MOn() 3 3

TO port TO() TOn() 3 3

LO port LO() LOn() 3 3

SI port SI() SIn() 3 -

SO port SO() SOn() 3 3

SIW port SIW() SIWn() 3 -

SOW port SOW() SOWn() 3 3

RS-232C CMU --------------- 3 3

Ethernet ETH --------------- 3 3

Other File END code EOF --------------- 3 -

n: number a: Alphabetic character b: Alphanumeric character or underscore (_)
c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type
i: Input/output type

 3: Permitted -: Not Permitted

• The following cautions apply when a restart is performed after a stop occurred during execution

of the SEND statement:

 1. When reading from RS-232C / Ethernet (SEND CMU TO XXX, SEND ETH TO XXX):

When the SEND statement is stopped during data reading from the reception buffer, the data

acquired up to that point is discarded.

 2. When writing to RS-232C / Ethernet (SEND XXX TO CMU, SEND XXX TO ETH):

When the SEND statement is stopped during data writing to the transmission buffer, the data

is written from the beginning.

SAMPLE

SEND PGM TO CMU ················· Outputs all user programs from the RS-

232C port.

SEND <PRG1> TO CMU ·············· Outputs the PRG1 program from the RS-

232C port.

SEND CMU TO PNT ················· Inputs a point data file from the RS-

232C port.

SEND "T1" TO CMU ················ Outputs the "T1" character string from

the RS-232C port.

SEND CMU TO A$ ·················· Inputs character string data to

variable A$ from the RS-232C port.

 Reference For details, refer to Chapter 10 "Data file description".

Related commands OPEN, CLOSE, SETGEP, GEPSTS

MEMO

8

SERVO 8-193

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 106 SERVO
Controls the servo status

Format

SERVO [robot number] ON (axis number)

 OFF

 FREE

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes not specifiable

• If not input, all axes are specified.)

 Explanation This command controls the servo ON/OFF at the specified axes or all axes.

SERVO
command SERVO Motor power Dynamic

brake
Electromagnetic

brake
ON ON OFF OFF OFF

OFF OFF OFF
(In the case of all axes servo OFF) ON ON

FREE OFF Continues the previous status OFF OFF

• This command is executed after the operation of all axes of the specified robot has been

complete (after positioned within the tolerance).

• The motor power is a power supply unit for robot (motor) in the controller.

• The dynamic brake controls the motor by using the electric power which is generated in the

motor when the servo is turned OFF.

SAMPLE

SERVO ON ····················· T u r n s s e r v o s O N a t a l l a x e s

of robot 1.

SERVO OFF ····················· T u r n s t h e s e r v o O F F a n d a p p l i e s

t h e d y n a m i c b r a k e a t a l l a x e s

of robot 1. Axes equipped with brakes are

all locked by the brake.

SERVO FREE(3) ··················· T u r n s s e r v o s O F F a t a x i s 3

of robot 1, and releases the brake.

CAUTION
 • Always check that the
Emergency Stop is ON
and Servo is OFF when
working within the robot
movement range.

 • Electromagnetic brake is
the brake to prevent the
vertical axis from sliding
downward. The vertical
axis will slide downward
when the servo is FREE,
caus ing a hazardous
situation.

MEMO

8

8-194 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 107 SET
Turns the bit at the specified output port ON

Format

SET DOm(b,···,b) , time

 DO (mb,···,mb)

 MOm(b,···,b)

 MO (mb,···,mb)

 TOn(b,···,b)

 TO (nb,···,nb)

 LOn(b,···,b)

 LO (nb,···,nb)

 SOm(b,···,b)

 SO (mb,···,mb)

 Values m: port number

n: port number

b: bit definition

time

2 to 7, 10 to 17, 20 to 27

0, 1

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

10 to 3600000 (units: ms)

 Explanation Turns ON the bits of specified ports.

 The pulse output time (unit: ms) is specified by the <time> value.

 The program execution is WAIT status while the output is ON. When the specified

time elapses, the output is turned OFF, and the execution ends.

 If no hardware port exists, nothing is output.

SAMPLE

SET DO2() Turns ON DO(27 to 20).

SET DO2(6,5,1),200 ·············· DO(26,25,21) switches ON for 200ms.

SET DO(37,35,27,20) ············· Turns DO(37, 35, 27, 20) ON.

Related commands RESET, DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and
"1" are not allowed at DO,
and SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

8

SETGEP 8-195

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 108 SETGEP
Sets the General Ethernet Port

Format

SETGEP m, n, "IP adress", ppppp, e, t

 Values m: General Ethernet Port number0 to 7

 n: mode ..0: server, 1: client

 IP adress ..0.0.0.0 to 255.255.255.255

 ppppp: port number0 to 65535

 e: Termination code●..............................0: CRLF, 1: CR

 t: port type0: TCP

 Explanation Sets the specified General Ethernet Port. The General Ethernet Port can open/ close

the communication port by OPEN/ CLOSE commands.

 <IP adress> must be enclosed in " " (double quotation marks).

 When "0: server" is selected at "n: mode", although <IP adress> can be omitted, " "

(double quotation marks) must be written.

When Server mode is selected,

• IP address: IP address already set on the controller is used to communicate, so IP address setting

is unnecessary. (The IP address set by <IP address> is invalid in this case.)

• Port number: Set a port number which differs from the one on the controller.

When Client mode is selected,

• IP address and port number: Set the IP address and port number of the connection destination

server.

SAMPLE

IPADRS$=“192.168.0.100” ········· Assigns the IP adress(192.168.0.100) of the

server to connect to variable IPADRS$.

SETGEP 1, 1, IPADRS$, 100, 0, 0

 ····················· Sets the conditions below on General

Ethernet Port 1.

 ■（mode: client

 ■（the IP adress of the server to connect to: 192.168.0.100

 ■（the port number of the server to connect to: 100

 ■（Termination code : CRLF

OPEN GP1 ····················· Connects the server specified at

General Ethernet Port 1.

SEND “123” TO GP1 ··············· Sends the character strings "123" from

General Ethernet Port 1.

CLOSE GP1 ····················· Disconnects from the server specified

at General Ethernet Port 1.

Related commands OPEN, CLOSE, SEND, GEPSTS

MEMO

8

8-196 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 109 SGI
Assigns /acquires the value to a specified integer type static variable

Format

SGIn=xxxxxx

 Values n: integer type static variable number 0 to 31

 xxxxxx ... integer of -2147483648 to 2147483647

 Explanation Assigns xxxxxx to the integer type static variable (SGI) specified by "n". If a real

number with decimal point is specified at xxxxxx, assigns a value with decimal

fractions truncated.

SAMPLE

SGI1=300 ····················· Assigns 300 to SGI1.

Functions

Format

SGIn

 Values n: integer type static variable number 0 to 31

 Explanation Acquires the value of the integer type static variable (SGI) specified by "n".

SAMPLE

A%=SGI1 ····················· Assigns the value of SGI1 to variable A%.

Related commands SGR

8

SGR 8-197

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 110 SGR
Assigns /acquires the value to a specified real type static variable

Format

SGRn=xxxxxx

 Values n: real type static variable number

xxxxxx ..

0 to 31

1. Single-precision real numbers

 -999999.9 to +999999.9

 • 7 digits including integers and decimals.

 (For example, ".0000001" may be used.)

2. Single-precision real numbers in exponent form

 -1.0×1038 to +1.0×1038

 • Mantissas should be 7 digits or less,

 including integers and decimals.

 Explanation Assigns xxxxxx to the real type static variable (SGR) specified by "n".

SAMPLE

SGR1=1320.355 ··················· Assigns 1320.355 to SGR1.

Functions

Format

SGRn

 Values n: real type static variable number 0 to 31

 Explanation Acquires the value of the real type static variable (SGR) specified by "n".

SAMPLE

A!=SGR1 ····················· Assigns the value of SGR1 to variable A!.

Related commands SGI

8

8-198 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 111 SHARED
Enables sub-procedure referencing without passing on the variable

Format

SHARED variable(), variable()...

 Explanation This statement allows variables declared with a program level code to be referenced

with a sub-procedure without passing on the variables as dummy arguments.

 The program level variable used by the sub-procedure is specified by the <variable>

value.

 A simple variable or an array variable followed by parentheses is specified. If an array

is specified, that entire array is selected.

• Normally, a dummy argument passes along the variable to a sub-procedure, but the SHARED

statement allows referencing to occur without passing along the dummy argument.

• The SHARED statement allows variables to be shared only between a program level code and

sub-procedure which are within the same program level.

SAMPLE

DIM Y!(10)

X!=2. 5

Y!(10)=1. 2

CALL *DISTANCE

CALL *AREA

HALT

SUB *DISTANCE

 SHARED X!,Y!() ·············· Variable referencing is declared by

SHARED.

 PRINT X!^2+Y!(10)^2 ·········· The variable is shared.

END SUB

SUB *AREA

 DIM Y!(10)

 PRINT X!*Y!(10) ·············· The variable is not shared.

END SUB

Related commands SUB, END SUB

NOTE
 • The program level code is
a program written outside
the sub-procedure.

MEMO

8

SHIFT 8-199

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 112 SHIFT
Sets the shift coordinates

Format

SHIFT [robot number] shift variable

 OFF

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Sets the shift coordinates specified by <shift variable> to the robot specified by

<robot number>.

 When OFF is specified, the coordinates shift by <shift variable> does not occur.

• This statement is executed after axis positioning is complete (within the tolerance range).

• When OFF is specified, it is the same as the setting: 0.000 at each X, Y, Z and rotation

direction-offset by the <shift variable>.

SAMPLE

SHIFT S1 ····················· Shifts the coordinate of robot 1 to

the "shift 1" coordinate.

MOVE P,P10

SHIFT S[A] ····················· Shifts the coordinate of robot 1 to

the coordinate specified by variable A.

MOVE P,P20

HALT

Related commands Shift definition statement, shift assignment statement

MEMO

8

8-200 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 113 SI
Acquires specified SI status

Format

LET expression = SIm(b,···,b)

LET expression = SI(mb,···,mb)

 Values m: port number

b: bit definition

0 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Acquires SI port input status specified by "m".

SAMPLE

A%=SI2() ····················· The input status from SI (27) to SI (20)

is assigned to variable A%.

A%=SI0(6,5,1) ·················· The SI (06), SI (05), SI (01) input

status is assigned to variable A% (when

all the above signals are "1" (ON), A% = 7).

A%=SI(37,35,27,10) ·············· The SI (37), SI (35), SI (27) SI(10) input status

is assigned to variable A% (when all the above

signals except SI (27) are "1" (ON), A% = 13).

8

SID 8-201

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 114 SID
Acquires a specified serial input's double-word information

Format

LET SID(m)

 Values m: port number2, 4, 6, 8, 10, 12, 14

 Explanation Acquires the value at the SID port specified by "m".

 The acquisition range is -2,147,483,648 (&H80000000) to 2,147,483,647 (&H7FFFFFFF).

• The information is handled as signed double word data.

• "0" is input if the specified port does not exist.

• The lower port number data is placed at the lower address.

 For example, if SIW(2) =&H2345,SIW(3) =&H0001, then SID(2) =&H00012345.

SAMPLE

A%=SID(2) ····················· The input status of SIW(2), SIW(3) is

assigned to variable A%.

A%=SID(14) ····················· The input status of SIW(14), SIW(15)

is assigned to variable A%.

Related commands SIW

MEMOMEMO

8

8-202 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 115 SIN
Acquires the sine value for a specified value

Format

SIN(expression)

 Values expressionAngle (units: radians)

 Explanation This function gives the sine value for the <expression> value.

SAMPLE

A(0)=SIN(B*2+C) ················· Assigns the expression B*2+C sine

value to array A (0).

A(1)=SIN(DEGRAD(30)) ············ Assigns a 30.0° sine value to array A

(1).

Related commands ATN, COS, DEGRAD, RADDEG, TAN

8

SIW 8-203

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 116 SIW
Acquires a specified serial input's word information

Format

LET SIW(m)

 Values m: port number2 to 15

 Explanation Acquires the value at the SIW port specified by "m".

 The acquisition range is 0 (&H0000) to 65535 (&HFFFF).

• The information is handled as unsigned word data

• "0" is input if the specified port does not exist.

SAMPLE

A%=SIW(2) ····················· The input status of SIW (2) is assigned

to variable A%.

A%=SIW(15) ····················· The input status of SIW (15) is

assigned to variable A%.

Related commands SID

MEMOMEMO

8

8-204 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 117 Sn
Defines the shift coordinates in the program

Format

Sn = x y z r

 Values n ..0 to 39

 x, y, z, r-99,999.99 to 99,999.99

 Explanation Defines shift coordinate values in order to shift the coordinates for robot movement.

Only "mm" units can be used for these coordinate values ("pulse" units cannot be

used).

1. "n" indicates the shift number.

2. The "x" to "r" input data must be separated with spaces (blanks).

3. The "x" to "r" input data is recognized as "mm" unit data.

4. "x" to "z" correspond to the Cartesian coordinate system's x, y, z coordinate shift

values, and "r" corresponds to the xy coordinates' rotational shift values.

SAMPLE

S0 = 0.000 0.000 0.000 0.000

S1 = 100.000 200.000 50.000 90.000

P3 = 100.000 0.000 0.000 0.000 0.000 0.000

SHIFT S0

MOVE P,P3

SHIFT S1

MOVE P,P3

HALT

Related commands Shift assignment statement, SHIFT

NOTE
 • A l l i n p u t v a l u e s a r e
handled as constants.

 • If the controller power is
turned off during execution
o f a sh i f t coord inate
definition statement, a
memor y- re lated er ror
such as "9.706: Shift data
destroyed" may occur.

8

SO 8-205

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 118 SO
Outputs a specified value to serial port or acquires the output status

Format

1. LET SOm(b,···,b) =expression

2. LET SO (mb,···,mb) =expression

 Values m: port number

b: bit definition

2 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Outputs a specified value to the SO port.

 Only the <value> data's integer-converted lower bits corresponding to the bits

defined at the left side can be output.

 If the port which does not exist is specified, nothing is output.

SAMPLE

SO2()=&B10111000 ··············· SO (27, 25, 24, 23) are turned ON, and

SO (26, 22, 21, 20) are turned OFF.

SO2(6,5,1)=&B010 ··············· SO (25) are turned ON, and SO (26, 21)

are turned OFF.

SO3()=15 ····················· SO (33, 32, 31, 30) are turned ON, and

SO (37, 36, 35, 34) are turned OFF.

SO(37,35,27,20)=A ··············· The lower 4 bits of integer-converted

variable A are output to SO (37, 35,

27, 20).

Related commands RESET, SET

CAUTION
 • Outputs to SO0() and
SO1() are not possible.

REFERENCE

 • For bit sett ing detai ls ,
refer to Chapter 3 "10 Bit
Settings".

8

8-206 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 118 SO

Functions

Format

LET SOm (b,···,b)

LET SO (mb,···,mb)

 Values m: port number

b: bit definition

0 to 7, 10 to 17, 20 to 27

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Indicates SO port output status.

SAMPLE

A%= SO2() ····················· Output status of ports SO(27) to

SO(20) is assigned to variable A%.

A%= SO0(6, 5, 1) ················ Output status of SO(06), SO(05) and

SO(01) is assigned to variable A%.

(If all above signals are 1(ON), then

A%=7.)

A%= SO(37,35,27,10) ············· O u t p u t s t a t u s o f S 0 (3 7) ,

S O (3 5) , S O (2 7) a n d S 0 (1 0)

i s a s s i g n e d t o v a r i a b l e A % .

(If all above signals except S0(27)

are 1 (ON), then A%=13.)

Related commands RESET, SET

8

SOD 8-207

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 119 SOD
Outputs a specified serial output's double-word information or acquires the output status

Format

LET SOD(m)=expression

 Values m: port number2, 4, 6, 8, 10, 12, 14

 Explanation Outputs the value to the SOD port specified by "m".

 The output range is -2,147,483,648 (&H80000000) to 2,147,483,647 (&H7FFFFFFF).

• The information is handled as signed double word data.

• If a serial port does not actually exist, the information is not output externally

• The lower port number data is placed at the lower address.

 For example, if SOW(2) =&H2345,SOW(3) =&H0001, then SOD(2) =&H00012345.

SAMPLE

SOD(2)=&H12345678 ·············· Outputs &H12345678 to SOD(2).

SOD(4)=1048575 ················· Outputs 1048575(&HFFFFF) to SOD(4).

SOD(2)=A% ····················· Outputs the value of variable A% to

SOD(2).

Functions

Format

LET SOD(m)

 Values m: port number2, 4, 6, 8, 10, 12, 14

 Explanation Acquires the SOD port output status specified by "m".

SAMPLE

A%=SOD(2) ····················· The output status of SOD(2) is assigned

to variable A%.

Related commands SOW

MEMOMEMO

8

8-208 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 120 SOW
Outputs a specified serial output's word information or acquires the output status

Format

LET SOW(m)=expression

 Values m: port number2 to 15

 Explanation Outputs the value to the SOW port specified by "m".

 The output range is 0 (&H0000) to 65535 (&HFFFF).

 Note that if a negative value is output, the low-order word information will be output

after being converted to hexadecimal.

 Example: SOW(2)=-255

 The contents of -255 (&HFFFFFF01) are assigned to SOW (2).

 -255 is a negative value, so the low-order word information (&HFF01) is assigned.

• The information is handled as unsigned word data.

• If a serial port does not actually exist, the information is not output externally.

• If a value exceeding the output range is assigned, the low-order 2-byte information is output.

SAMPLE

SOW(2)=&H0001 ·················· Outputs &H0001 to SOW(2).

SOW(3)=255 ····················· Outputs 255(&H00FF) to SOW(3).

SOW(15)=A% ····················· The contents of variable A% are

assigned in SOW (15). If the variable

A% value exceeds the output range, the

low-order word information will be

assigned.

Functions

Format

LET SOW(m)

 Values m: port number2 to 15

 Explanation Acquires the SOW port output status specified by "m".

SAMPLE

A%=SOW(2) ····················· The output status of SOW (2) is

assigned to variable A%.

Related commands SOW

MEMOMEMO

8

SPEED 8-209

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 121 SPEED
Changes the program movement speed

Format

SPEED [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression1 to 100 (units: %)

 Explanation Changes the program movement speed to the value indicated by <expression>.

 This speed change applies to all robot axes and auxiliary axes of the specified robot.

 The operation speed is determined by multiplying the automatic movement speed

(specified from the programming box and by the ASPEED command), by the program

movement speed (specified by SPEED command).

 Operation speed = automatic movement speed × program movement speed

 Example:

 Automatic movement speed ... 80%

 Program movement speed ... 50%

 Movement speed = 40% (80% × 50%)

SAMPLE

ASPEED 100 ····················· Changes the Automatic movement speed

of robot 1 to 100%

SPEED 70 ····················· Changes the Program movement speed of

robot 1 to 70%

MOVE P,P0 ····················· Moves robot 1 from current position to

P0 at a speed of 70% (=100 × 70).

SPEED 50 ····················· Changes the Program movement speed of

robot 1 to 50%

MOVE P, P1 ····················· Moves robot 1 from current position to

P1 at a speed of 50% (=100 × 50).

MOVE P,P2, S=10 ················· Moves robot 1 from current position to

P2 at a speed of 10% (=100 × 10).

HALT

Related commands ASPEED

NOTE
 • Automatic movement speed

Specified by programming
box operation or by the
ASPEED command.

 • Program movement speed

S p e c i f i e d b y S P E E D
commands or MOVE, DRIVE
speed options.

8

8-210 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 122 SQR
Acquires the square root of a specified value

Format

SQR(expression)

 Values expression0 or positive number.

 Explanation Gives the square root of the <expression> value. An error occurs if the <expression>

value is a negative number.

SAMPLE

A=SQR(X^2+Y^2) ·················· The square root of X^2+Y^2 is assigned

to variable A.

8

START 8-211

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 123 START
Starts a new task

Format

START <program name> ,Tn, p

 PGm

 Values m: Program number1 to 100

 n: Task number1 to 16

 p: Task priority ranking1 to 64

 Explanation Starts task “n” specified by the program with the “p” priority ranking.

 If task number “n” is omitted, the task with the smallest number among the tasks yet

to be started is automatically specified.

 If a priority ranking is not specified, "32" is adopted as the priority ranking for this

task.

 The smaller the priority number, the higher the priority (high priority: 1 ↔ low

priority: 64).

 When RUNNING status occurs at a task with higher priority, all tasks with lower

priority also remain in READY status.

 The program name must be enclosed in < > (angle brackets).

SAMPLE

START <SUB_PGM>,T2,33

*ST:

 MOVE P,P0,P1

GOTO *ST

HALT

Program name:SUB_PGM

‘SUBTASK ROUTINE

*SUBTASK:

 P100 = WHERE

 IF LOCZ(P100) > 10000 THEN

 DO(20) = 1

 ELSE

 DO(20) = 0

 ENDIF

GOTO *SUBTASK

EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, CHGPRI

8

8-212 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 124 STR$
Converts a numeric value to a character string

Format

STR$(expression)

 Explanation Converts the value specified by the <expression> to a character string. The

<expression> specifies an integer or real value.

SAMPLE

B$=STR$(10.01)

Related commands VAL

8

SUB to END SUB 8-213

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 125 SUB to END SUB
Defines a sub-procedure

Format

SUB label (dummy argument, dummy argument...)

 command block

END SUB

 Explanation Defines a sub-procedure.

 The sub-procedure can be executed by a CALL statement. When the END SUB

statement is executed, the program jumps to the next command after the CALL

statement that was called. Definitions are as follows.

1. All variables declared within the sub-procedure are local variables, and these are

valid only within the sub-procedure. Local variables are initialized each time the

sub-procedure is called up.

2. Use a SHARED statement in order to use global variables (program level).

3. Use a <dummy argument> when variables are to be passed on. If two or more

dummy arguments are used, separate them by a comma (,).

4. A valid <dummy argument> consists of a name of variable and an entire array

(array name followed by parentheses). An error will occur if array elements (a

<subscript> following the array name) are specified.

• Sub-procedures cannot be defined within a sub-procedure.

• A label can be defined within a sub-procedure, but it cannot jump (by a GOTO or GOSUB

statement) to a label outside the sub-procedure.

• Local variables cannot be used with PRINT and SEND statements.

SAMPLE 1

A=1

CALL *TEST

PRINT A

HALT

’SUB ROUTINE: TEST

SUB *TEST

 A=50 ····················· Handled as a different variable than

the "A" shown above.

END SUB

• In the above example, the program level variable "A" is unrelated to the variable "A" within the

sub-procedure. Therefore, the value indicated in the 3rd line PRINT statement becomes "1".

MEMO

MEMO

8

8-214 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 125 SUB to END SUB

SAMPLE 2

X% = 4

Y% = 5

CALL *COMPARE(REF X%, REF Y%)

PRINT X%,Y%

Z% = 7

W% = 2

CALL *COMPARE(REF Z%, REF W%)

PRINT Z%,W%

HALT

’SUB ROUTINE: COMPARE

SUB *COMPARE(A%, B%)

 IF A% < B% THEN

 TEMP% = A%

 A% = B%

 B% = TEMP%

 ENDIF

END SUB

• In the above example, different variables are passed along as arguments to call the sub-

procedure 2 times.

Related commands CALL, EXIT SUB, SHARED

MEMO

8

SUSPEND 8-215

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 126 SUSPEND
Temporarily stops another task which is being executed

Format

SUSPEND Tn

 <program name>

 PGm

 Values n: Task number1 to 16

 m: Program number1 to 100

 Explanation Temporarily stops (suspends) another task which is being executed. A task can be

specified by the name or the number of a program in execution.

 This statement can also be used for tasks with a higher priority ranking than this task

itself.

 The program name must be enclosed in < > (angle brackets).

• If a task (program) not active is specified for the execution, an error occurs.

SAMPLE

START <SUB_PGM>,T2

SUSFLG=0

*L0:

 MOVE P,P0

 MOVE P,P1

 WAIT SUSFLG=1

 SUSPEND T2

 SUSFLG=0

GOTO *L0

HALT

Program name:SUB_PGM

’SUBTASK ROUTINE

*SUBTASK:

 WAIT SUSFLG=0

 DO2(0)=1

 DELAY 1000

 DO2(0)=0

 DELAY 1000

 SUSFLG=1

 GOTO *SUBPGM

 EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND

MEMO

8

8-216 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 127 SWI
Switches the program being executed

Format

SWI <program name>

 Explanation This statement switches from the current program to the specified program, starting

from the first line.

 Although the output variable status is not changed when the program is switched, the

dynamic variables and array variables are cleared.

 The program name must be enclosed in < > (angle brackets).

• If the program specified as the switching target does not exist, a "3.203: Program doesn't exist"

(code: &H0003 &H00CB) error occurs and operation stops.

SAMPLE

SWI <ABC> ····················· Switches the execution program to

"ABC".

MEMO

8

TAN 8-217

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 128 TAN
Acquires the tangent value for a specified value

Format

TAN(expression)

 Values expressionAngle (units: radians)

 Explanation Gives a tangent value for the <expression> value. An error will occur if the

<expression> value is a negative number.

SAMPLE

A(0)=B-TAN(C) ··················· The difference between the tangent

values of variable B and variable C is

assigned to array A (0).

A(1)=TAN(DEGRAD(20)) ············ The 20.0° tangent value is assigned to

array A (1).

Related commands ATN, COS, DEGRAD, RADDEG, SIN

8

8-218 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 129 TCOUNTER
Timer & counter

Format

TCOUNTER

 Explanation Outputs count-up values at 1ms intervals starting from the point when the

TCOUNTER variable is reset.

 After counting up to 2,147,483,647, the count is reset to 0.

SAMPLE

MOVE P,P0

WAIT ARM

RESET TCOUNTER

MOVE P,P1

WAIT ARM

A = TCOUNTER

PRINT TCOUNTER ·················· Displays the P0 to P1 movement time

until the axis enters the tolerance

range on the programming box.

Related commands RESET

8

TIME$ 8-219

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 130 TIME$
Acquires the current time

Format

TIME$

 Explanation Acquires the current time in an hh:mm:ss format character string. "hh" is the hour,

"mm" is the minutes, and "ss" is the seconds. The clock can be set in the SYSTEM

mode's initial processing.

SAMPLE

A$=TIME$

PRINT TIME$

Related commands DATE$, TIMER

8

8-220 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 131 TIMER
Acquires the current time

Format

TIMER

 Functions Acquires the current time in seconds, counting from midnight. This function is used to

measure a program's run time, etc.

 The clock can be set in the SYSTEM mode's initial processing.

SAMPLE

A%=TIMER

FOR B=1 TO 10

MOVE P,P0

MOVE P,P1

NEXT

A%=TIMER-A%

PRINT A%/60;"（";A% MOD 60

HALT

Related commands TIME$

CAUTION
 • The t ime indicated by
the internal clock may
differ somewhat from the
actual time.

8

TO 8-221

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 132 TO
Outputs a specified value to the TO port or acquires the output status

Format

1. LET TOm(b,···,b) =expression

2. LET TO (mb,···,mb) =expression

 Values m: port number

b: bit definition

0, 1

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Outputs the specified value to the TO port. The output value is the <expression>'s

integer-converted lower bits corresponding to the bit definition specified at the left

side.

 The OFF/ON settings for bits which are being used in a SEQUENCE program have

priority while the SEQUENCE program is running.

SAMPLE

TO0() = &B00000110

Functions

Format

LET TOm (b,···,b)

LET TO (mb,···,mb)

 Values m: port number

b: bit definition

0, 1

 0 to 7 (If omitted, all 8 bits are processed.)

If multiple bits are specified, they are expressed from the

left in descending order (high to low).

 Explanation Indicates the parallel port signal status.

SAMPLE

A%= TO0() ····················· Output status of ports TO(07) to

TO(00) is assigned to variable A%.

A%= TO0(6, 5, 1) ················ Output status of TO(06), TO(05) and

TO(01) is assigned to variable A%.

(If all above signals are 1(ON), then A%=7.)

A%=TO(17, 15, 00) ··············· Output status of T0(17), TO(15) and

T0(00) is assigned to variable A%.

(If all above signals except T0(15)

are 1 (ON), then A%=5.)

Related commands RESET, SET

8

8-222 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 133 TOLE
Specifies/acquires the tolerance parameter

Format

1. TOLE [robot number] expression

2. TOLE [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression Varies according to the motor which has been specified (unit: pulse)

 Explanation Change the "tolerance" parameter of the specified axis to the <expression> value (unit:

pulse).

 Format 1: The change is applied to all axes of the specified robot.

 Format 2: The change is applied to only the axis specified by the <axis number> of

the specified robot.

• This statement is executed after positioning of the specified axes is complete (within the tolerance range).

Functions

Format

TOLE [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the "tolerance" parameter values for the axis specified by <axis number>.

SAMPLE

’CYCLE WITH DECREASING TOLERANCE

DIM TOLE(5)

FOR A=200 TO 80 STEP -20

 GOSUB *CHANGE_TOLE

 MOVE P,P0

 MOVE P,P1

NEXT A

C=TOLE(2) ····················· The tolerance parameter of axis 2 of robot 1

is assigned to variable C.

HALT

*CHANGE_TOLE:

FOR B=1 TO 4

 TOLE(B)=A

NEXT B

RETURN

MEMO

8

TORQUE 8-223

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 134 TORQUE
Specifies/acquires the maximum torque command value

Format

TORQUE [robot number] (axis number) =expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 expression1 to 100 (units: %)

 Explanation Changes the maximum torque command value of the specified axis to the

<expression> value. The new value is valid when the next movement command

(MOVE or DRIVE statement, etc.) is executed. The parameter value does not change.

 The conditions to cancel a torque limit are as follows.

 • The TORQUE command for the same axis is executed.

 • The controller power turned off and then on again.

 • The axis polarity parameter is changed or the parameter is initialized.

 • The servo is turned off.

 The maximum torque command value becomes temporarily invalid in execution

below.

 • Return- to-origin is in execution.

 • The PUSH statement is in execution.

 (only the torque value in the moving direction is changed to the value specified by

the PUSH statement, the value in the opposite direction is hold and not changed.)

 After these movements, the value backs to the maximum torque command value

when a next movement command (MOVE statement, for example) is executed.

• The TORQUE statement limits the torque in the both (rotation and opposite) direction of axis,

whereas the PUSH statement limits the torque in its rotation direction only.

Functions

Format

TORQUE [robot number] (axis number)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 axis number1 to 6

 Explanation Acquires the maximum torque command value for the axis specified by <axis

number>.

CAUTION
 • If the specified torque
limit is too small, the axis
may not move. Never
enter within the robot
movement range to avoid
danger even though the
robot is in stop status .
In this case, press the
emergency stop button
before proceeding with
the operation.

 • I f the speci fied value
i s less than the rated
torque, an error may not
occur even if the robot
strikes an obstacle.

MEMO

8

8-224 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 134 TORQUE

SAMPLE

TORQUE (1) = 50 ················· Changes the max. torque of axis 1 of

robot 1 to 50%.

DRIVE (1,P1) ···················· Moves the axis 1 of robot 1 from its

current position to the point specified

by P1.

 (Changes the max. torque at the same

time with the start of the movement.)

WAIT ARM ····················· Waits for the completion of an

operation of axis 1 of robot 1.

TORQUE (1) = 100 ················ Returns the max. torque of axis 1 of

robot 1 to the original value (100%).

MOVE P,P0 ····················· Moves the robot 1 from its current position

to the point specified with P0.

 (Returns the max. torque of axis 1 to

the original value (100%) at the same

time with the start of a movement.)

Related commands CURTRQ, PUSH

8

TSKPGM 8-225

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 135 TSKPGM
Acquires the program number which is registered in a specified task number

Format

TSKPGM(task number)

 Values task numberTask number which acquires the program number

 Explanation Acquires the program number which is registered in the task specified by the task

number.

SAMPLE

A=TSKPGM(1) ····················· Assignes a program number registered

in task 1 to variable A.

Related commands PGMTSK, PGN

8

8-226 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 136 VAL
Converts character strings to numeric values

Format

VAL (character string expression)

 Explanation Converts the numeric value of the character string specified in the <character string

expression> into an actual numeric value.

 The value may be expressed in integer format (binary, decimal, hexadecimal), or real

number format (decimal point format, exponential format).

 The VAL value becomes "0" if the first character of the character string is "+", "-", "&"

or anything other than a numeric character.

 If there are non-numeric characters or spaces elsewhere in the character string, all

subsequent characters are ignored by this function.

 However, for hexadecimal expressions, "A" to "F" are considered numeric characters.

 Hexadecimal number&Hnnnn

 Decimal number nnnn

 Binary number&Bnnnn

 Decimal point nnn.nnn

 Exponents....................................... nnEmm

SAMPLE

A=VAL("&B100001")

8

WAIT 8-227

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 137 WAIT
Waits until the conditional expression is met

Format

WAIT conditional expression , expression

 Values expression0 to 2147483647 (units: ms)

 Explanation Establishes "wait" status until the condition specified by the <conditional expression>

is met. Specify the time-out period (unit: ms) in the <expression>.

 This command terminates if the time-out period elapses before the WAIT condition is

met. The minimum wait time is 1ms but changes depending on the execution status

of other tasks.

• When the conditional expression is a numeric expression, an expression value other than "0"

indicates TRUE status, and "0" indicates FALSE status.

SAMPLE

WAIT A=10 ····················· Wait status continues until variable A

becomes 10.

WAIT DI2()=&B01010110 ·········· Waits until DI(21),(22),(24),(26) are

turned on, and DI(20),(23),(25),(27) is

turned off.

WAIT DI2(4,3,2)=&B101 ··········· Waits until DI(22) and DI(24) are

turned on, and DI(23) is turned off.

WAIT DI(31)=1 OR DO(21)=1 ······· Wait status continues until either DI

(31) or DO(21) turns ON.

WAIT DI(20)=1,1000 ·············· Wait status continues until DI(20) turns

ON. If DI(20) fails to turn ON within 1

second, the command is terminated.

Related commands DRIVE, DRIVEI, MOVE, MOVEI, MOVET

MEMO

8

8-228 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

8

8-228 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 138 WAIT ARM
Waits until the robot axis operation is completed

Format

WAIT ARM [robot number] (axis number)

 Values robot number

axis number

1 to 4 (

 1 to 6 (

If not input, robot 1 is specified.)

• Multiple axes not specifiable

• If not input, all axes are specified.)

 Explanation Establishes "wait" status until the axis movement is completed (is positioned within

the tolerance range).

SAMPLE

WAIT ARM ····················· Waits for the movement completion of

robot 1.

WAIT ARM2 ·················· Waits for the movement completion of

axis 2 of robot 2.

Related commands DRIVE, DRIVEI, MOVE, MOVEI, MOVET

8

WEIGHT 8-229

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 139 WEIGHT
Specifies/acquires the tip weight parameter

Format

WEIGHT [robot number] expression

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 expression The range varies according to the robot which has

been specified.

 Explanation Changes the "tip weight" parameter of the robot to the <expression> value.

 This change does not apply to auxiliary axes.

Functions

Format

WEIGHT [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Acquires the "tip weight" parameter value of the robot specified by <robot number>.

SAMPLE

A=5

B=2

C=WEIGHT ····················· The tip weight parameter of robot 1 is

assigned to variable C.

WEIGHT A ····················· The tip weight parameter of robot 1 is

changed to value (5) of variable A.

MOVE P,P0

WEIGHT B ····················· The tip weight parameter of robot 1 is

changed to value (2) of variable B.

MOVE P,P1

WEIGHT C ····················· The tip weight parameter of robot 1

is replaced to the origin value (the

value of variable C).

D=WEIGHT ····················· The tip weight parameter of robot 1 is

assigned to variable D.

HALT

8

8-230 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 140 WEND
Ends the WHILE statement's command block

Format

WHILE conditional expression

 command block

WEND

 Explanation Ends the command block which begins with the WHILE statement. A WEND

statement must always be paired with a WHILE statement.

 Jumping out of the WHILE to WEND loop is possible by using the GOTO statement,

etc.

SAMPLE

A=0

WHILE DI3(0)=0

 A=A+1

 MOVE P,P0

 MOVE P,P1

 PRINT "COUNTER=";A

WEND

HALT

Related commands WHILE

8

WHERE 8-231

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 141 WHERE
Acquires the arm's current position (pulse coordinates)

Format

WHERE [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Acquires the arm’s current position in the joint coordinates.

SAMPLE

P10=WHERE ····················· The current position's pulse coordinate

value of robot 1 is assigned to P10.

Related commands WHRXY

8

8-232 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 142 WHILE to WEND
Repeats an operation for as long as a condition is met

Format

WHILE conditional expression

 command block

WEND

 Explanation Executes the command block between the WHILE and WEND statements when the

condition specified by the <conditional expression> is met, and then returns to the

WHILE statement to repeat the same operation.

 When the <conditional expression> condition is no longer met (becomes false), the

program jumps to the next command after the WEND statement.

 If the <conditional expression> condition is not met from the beginning (false), the

command block between the WHILE and WEND statements is not executed, and a

jump occurs to the next statement after the WEND statement.

 Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

• When the conditional expression is a numeric expression, an expression value other than "0"

indicates TRUE status, and "0" indicates FALSE status.

SAMPLE 1

A=0

WHILE DI3(0)=0

 A=A+1

 MOVE P,P0

 MOVE P,P1

 PRINT "COUNTER=";A

WEND

HALT

SAMPLE 2

A=0

WHILE -1 ····················· Becomes an endless loop because the

conditional expression is always TRUE

(other than 0).

 A=A+1

 MOVE P,P0

 IF DI3(0)=1 THEN *END

 MOVE P,P1

 PRINT "COUNTER=";A

 IF DI3(0)=1 THEN *END

WEND

*END

HALT

MEMO

8

WHRXY 8-233

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 143 WHRXY
Acquires the arm's current position in Cartesian coordinates

Format

WHRXY [robot number]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation Acquires the arm’s current position in the Cartesian coordinates.

SAMPLE

P10=WHRXY ····················· The current position Cartesian

coordinate value of robot 1 is assigned

to P10.

Related commands WHERE

8

8-234 Chapter 8 Robot Language Lists

8

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 144 XYTOJ
Converts the Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

Format

XYTOJ [robot number] (point expression)

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 Explanation This function converts the Cartesian coordinate data (unit: mm, deg.) specified by the

<point expression> to the joint coordinate data (unit: pulse) of the robot specified by

the <robot number>.

 • When the command is executed, the data is converted based on the standard

coordinates, shift coordinates and hand definition that were set.

 • On SCARA robots, the converted result differs depending on whether right-

handed or left-handed is specified.

 • To convert joint coordinate data to Cartesian coordinate data, use the JTOXY

statement.

SAMPLE

P10=XYTOJ(P10) ·················· P10 is converted to joint coordinate

data of robot 1.

Chapter 9

PATH Statements

1 1 Overview ...9-1
2 2 Features ...9-1
3 3 How to use ...9-1
4 4 Cautions when using this function9-2

Overview 9-1

8

9

10

11

12

13

 1 Overview

This function moves the robot at a specified speed along a path composed of linear and circular

segments. Because speed fluctuations during movement are minimal, the PATH function is ideal for

applications such as sealing, etc.

 2 Features

 ■ Moves the robot at a constant speed along the entire movement path (except during acceleration

from a stop, and during deceleration just prior to the operation end).
 ■ Permits easy point teaching because the robot speed is not affected by the point teaching

positions' level of precision.
 ■ Permits movement speed changes for the entire movement path, or speed changes for only one

portion of the path (using the speed option).
 ■ Using the DO option permits signal outputs to a specified port at any desired position during

movement.

 3 How to use

The following robot language commands must be used as a set in order to use the PATH function.

 ■ PATH SET ... Starts path setting.
 ■ PATH (PATH L, PATCH C) Specifies the path to be used.
 ■ PATH END ... Ends path setting.
 ■ PATH START .. Starts actual movement along the path.

As shown below, the motion path is specified between the PATH SET and PATH END statements.

Simply specifying a path, however, does not begin robot motion.

Robot motion only occurs when the PATH START statement is executed after the path setting

procedure has been completed.

SAMPLE

MOVE P,P0,Z=0

PATH SET ····················· Start of robot 1's path setting

PATH L,P1,DO(20)=1@10.0

PATH L,P2

 ·

 ·

 ·

PATH C,P12,P13

PATH L,P14,DO(20)=0@20.0

PATH END ····················· End of robot 1's path setting

MOVE P,P1,Z=0

 ·

 ·

 •

MOVE P,P0,Z=0

PATH START ····················· Path motion of robot 1 is executed

HALT

9-2 Chapter 9 PATH Statements

8

9

10

11

12

13

 4 Cautions when using this function

 ■ Paths may comprise no more than 1000 points (total) linear and circular segments. 1 point forms 1

linear segment by PATH L command and 2 points form 1 circular segment by PATH C command.

Number of points specified by PATH L 1000
２

Number of points specified by PATH C
+ ≦

 ■ The robot must be positioned at the path start point when PATH motion is executed (by PATH

START statement).

 ■ At points where circular and linear segments connect, the motion direction of the two connecting

segments should be a close match (as close as possible). An excessive difference in their motion

directions could cause vibration and robot errors.

Circular and linear segment connection point:

if there is a large difference between the motion directions of the connecting segments

Good example Poor example

 ■ Where a linear segment connects to another linear segment, the motion path passes to the inner

side of the connection point. Moreover, as shown in fig. (1) below, the faster the speed, the

further to the inner side the path becomes. To prevent significant speed-related path shifts, add

more points as shown in fig. (2). Note also, that in some cases, the speed may have to be reduced

in order to prevent errors from occurring.

Linear segments connection point: Prevents a deviation

(1) (2)

Increase the number
of pointsHigh speed

Low speed

 ■ If an error occurs due the robot's inability to move at the specified speed:

Robot acceleration/deceleration occurs if the speed setting is changed when PATH motion begins,

stops, or at some point along the path. At such times, an error may occur before motion begins if the

distance between points is too short for the specified speed to be reached. In such cases, a slower

speed must be specified. If the error still occurs after the speed is lowered, adjust the PATH points to

increase the length of the linear or circular segments which contain acceleration or deceleration zones.

 ■ The hand system used during PATH motion must be the same as the hand system used at the

path's start point. The same applies if the path is to pass through points where hand flags are set.

Differing hand systems will cause an error and disable motion.

 ■ The first arm and second arm rotation information during PATH movement must be the same as

the first arm and second arm rotation information at the PATH movement's START point. If the

two are different, an error will occur and movement will be disabled.

 ■ If the robot is stopped by a stop signal, etc., during PATH motion, this is interpreted as an execution

termination, and the remaining path motion will not be completed even if a restart is executed.

Chapter 10

Data file description

1 1 Overview ...10-1
2 2 Program file ...10-3
3 3 Point file ...10-5
4 4 Point comment file10-8
5 5 Point name file 10-10
6 6 Parameter file.. 10-12
7 7 Shift coordinate definition file 10-16
8 8 Hand definition file 10-18
9 9 Pallet definition file 10-20
10 10 General Ethernet port file 10-24
11 11 Input/output name file 10-26
12 12 Area check output file 10-30
13 13 All file ... 10-32
14 14 Program directory file 10-34
15 15 Parameter directory file 10-36
16 16 Machine reference file 10-37
17 17 System configuration information file 10-39
18 18 Version information file 10-40

19 19 Option board file 10-41
20 20 Self check file 10-42
21 21 Alarm history file 10-43
22 22 Remaining memory size file 10-45
23 23 Variable file ... 10-46
24 24 Constant file .. 10-52
25 25 Array variable file 10-53
26 26 DI file .. 10-55
27 27 DO file .. 10-57
28 28 MO file ... 10-59
29 29 LO file ... 10-61
30 30 TO file ... 10-63
31 31 SI file ... 10-65
32 32 SO file ... 10-67
33 33 SIW file ... 10-69
34 34 SOW file ... 10-71
35 35 EOF file ... 10-73
36 36 Serial port communication file 10-74
37 37 Ethernet port communication file 10-75

7

8

9

10

11

12

13

Overview 10-1

 1 Overview

1.1 Data file types

This section explains data files used with a SEND statement and READ/WRITE online commands.

There are 36 different types of data files.

Type File Name
Definition Format Read-

out Write
All Individual File

User All file ALL --------------- 3 3

Program PGM <bbbbbbbb>
PGn 3 3

Point PNT Pn 3 3

Point comment PCM PCn 3 3

Point name PNM PNn 3 3

Parameter PRM
/cccccccc/
#cccccccc#
\cccccccc\

3 3

Shift definition SFT Sn 3 3

Hand definition HND Hn 3 3

Pallet definition PLT PLn 3 3

General Ethernet Port GEP GPn 3 3

Input/output name ION iNMn(n) 3 3

Area check output ACO ACn 3 3

Variable,
Constant

Variable VAR ab...by 3 3

Array variable ARY ab...by(x) 3 3

Constant ---------- “cc...c” 3 -

Status Program directory DIR <<bbbbbbbb>> 3 -
Parameter directory DPM --------------- 3 -

Machine reference
sensor, stroke-end MRF --------------- 3 -
mark ARP --------------- 3 -

System configuration information CFG --------------- 3 -
Version information VER --------------- 3 -
Option board OPT --------------- 3 -
Self check SCK --------------- 3 -
Alarm history LOG --------------- 3 -
Remaining memory size MEM --------------- 3 -

Device DI port DI() DIn() 3 -

DO port DO() DOn() 3 3

MO port MO() MOn() 3 3

TO port TO() TOn() 3 3

LO port LO() LOn() 3 3

SI port SI() SIn() 3 -
SO port SO() SOn() 3 3

SIW port SIW() SIWn() 3 -
SOW port SOW() SOWn() 3 3

RS-232C CMU --------------- 3 3

Ethernet ETH --------------- 3 3

Other File END code EOF --------------- 3 -

n: Number a: Alphabetic character b: Alphanumeric character or underscore (_)
c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type
i: Input/output type

 3: Permitted -: Not Permitted

7

8

9

10

11

12

13

10-2 Chapter 10 Data file description

 1 Overview

1.2 Cautions

Observe the following cautions when handling data files.

 ■ Only one-byte characters can be used.
 ■ All data is handled as character strings conforming to ASCII character codes.
 ■ Only upper-case alphabetic characters may be used in command statements (lower case

characters are prohibited).
 ■ Line lengths must not exceed 255 characters.
 ■ A [cr/lf] data format designation indicates CR code (0Dh) + LF code (0Ah).
 ■ The terms "reading out" and "writing" used in this manual indicate the following data flow;

Reading out: Controller → external communication device

Writing: External communication device → controller

7

8

9

10

11

12

13

Program file 10-3

 2 Program file

2.1 All programs

Read-out 3 When used as a read-out file, all programs currently stored are read out.

Write 3
Write files are registered at the controller under the program name indicated
at the "NAME = program name" line.

Format

PGM

 Meaning • Expresses all programs.

 • If there is a specification of a program number in the case of a write file, the new

program overwrites.

 • If the program number is omitted in the case of a write file, the assignment is made to

the smallest free number. If there are programs with the same name and with different

program numbers, the older program is deleted.

DATA FORMAT

NAME = program name [cr/lf]
PGN=mmm[cr/lf]
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
 :
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
 :
NAME = program name [cr/lf]
PGN=mmm[cr/lf]
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
 :
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
[cr/lf]

 Values a ..Character code

 mmmProgram number: 1 to 100

 ■ Program names are shown with 32 characters or less consisting of alphanumeric characters and

_ (underscore).
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PGM TO CMU ················· O u t p u t s a l l p r o g r a m s f r o m t h e

communication port.

Response:

RUN [cr/lf]

NAME=TEST[cr/lf]

PGN=1[cr/lf]

PGN=1

A=1[cr/lf]

RESET DO2()[cr/lf]

 :

HALT[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-4 Chapter 10 Data file description

 2 Program file

2.2 One program

Read-out 3

Write 3

Format

1.<program name>

2.PGmmm

 Meaning • Expresses a specified program.

 • "mmm" represents a number from 1 to 100.

 • Program names are shown with 32 characters or less consisting of alphanumeric

characters and _ (underscore), and must be enclosed in < > (angle brackets).

 • If a program name is omitted and written as <> in format 1, the current program is specified.

 • In the case of write file, an error occurs if the specified program name (<program

name>) differs from one on the data (NAME=program name).

DATA FORMAT

NAME=program name[cr/lf]

PGN=mmm

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

 :

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

[cr/lf]

 Values a ..Character code

 mmmProgram name:1 to 100
 ■ Program names are shown with 32 characters or less consisting of alphanumeric characters

and _ (underscore).
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

• At program writing operations, be sure to specify the program name after NAME=.

Program writing cannot occur if the program name is not specified.

• When there is a program number with the different program, the older one will be overwritten.

• When there is no program number specified, the smallest free number will be specified automatically.

• Writing into the currently selected program is not possible.

• When a sequence program is being executed, writing into the program name "SEQUENCE" is

not possible.

SAMPLE

SEND <TEST1> TO CMU ············· Outputs program TEST1 from the

communication port.

Response:

RUN [cr/lf]

NAME=TEST1[cr/lf]

PGN=1[cr/lf]

A=1[cr/lf]

RESET DO2()[cr/lf]

 :

HALT[cr/lf]

[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

Point file 10-5

 3 Point file

3.1 All points

Read-out 3 When used as a read-out file, all points currently stored are read out.
Write 3 When used as a write file, writing is performed with a point number.

Format

PNT

 Meaning • Expresses all point data.

DATA FORMAT

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

 :

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

[cr/lf]

 Values mmmm

f.................................

xxxxxx/../bbbbbb

t.................................

Point number: 0 to 29999

Coordinate sign: + / - / space

Represent a numeric value of 8 digits or less. When a dot is

included, this is treated as point data in "mm" units. Each piece

of data is separated by one or more spaces.

 Extended hand system flag setting for SCARA robots.

1: RIGHT 2:LEFT

 ■ Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.
 ■ If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified,

this is interpreted as "0" setting (no hand system flag).
 ■ The first arm and the second arm rotation information is processed as "0" if a numeral other than 0,

1, -1 has been specified, or if no numeral has been specified.

NOTE
 • I n teger po in t data i s
recognized in "pulse" units,
and real number point
data i s recognized in
"mm" units.

7

8

9

10

11

12

13

10-6 Chapter 10 Data file description

 3 Point file

 ■ A line containing only [cr/lf] is added at the end of the file to indicate the end of the file.

SAMPLE

SEND PNT TO CMU ················· O u t p u t s a l l p o i n t s f r o m t h e

communication port.

Response:

RUN [cr/lf]

P0 = 1 2 3 4 5 6 [cr/lf]

P1 = 426.200 -160.770 0.001 337.210 0.000 0.000 0 1 0 [cr/lf]

P2 = -27.570 -377.840 0.360 193.220 0.000 0.000 0 -1 0 [cr/lf]

 :

P29999= -251.660 -419.510 0.000 -127.790 0.000 0.000 2 -1 -1 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Point file 10-7

 3 Point file

3.2 One point

Read-out 3

Write 3

Format

Pmmmm

 Meaning • Expresses a specified point.

 • "mmmm" represents a number from 0 to 29999.

DATA FORMAT

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

 ■

 Values mmmm

f.............................

xxxxxx/../bbbbbb ...

t.............................

Point number: 0 to 29999

Coordinate sign: + / - / space

Represent a numeric value of 8 digits or less. When a dot is included,

this is treated as point data in "mm" units. Each piece of data is

separated by one or more spaces.

 Extended hand system flag setting for SCARA robots.

1: RIGHT 2:LEFT

 ■ Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.
 ■ If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified,

this is interpreted as "0" setting (no hand system flag).
 ■ The first arm and the second arm rotation information is processed as "0" if a numeral other than 0,

1, -1 has been specified, or if no numeral has been specified.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND P100 TO CMU ················ Outputs the specified point from the

communication port.

Response:

RUN [cr/lf]

P100= 1.000 2.000 3.000 4.000 5.000 6.000 0 1 0 [cr/lf]

END [cr/lf]

NOTE
 • Integers indicate point
data in "pulse" units, and
real number s in "mm"
units.

7

8

9

10

11

12

13

10-8 Chapter 10 Data file description

 4 Point comment file

4.1 All point comments

Read-out 3
When used as a read-out file, all point comments currently stored are read
out.

Write 3
When used as a write file, writing is performed with a point comment
number.

Format

PCM

 Meaning • Expresses all point comments.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/lf]

PCmmmm= sssssssssssssss[cr/lf]

 :

PCmmmm= sssssssssssssss[cr/lf]

PCmmmm= sssssssssssssss[cr/lf]

[cr/lf]

 Values mmmmPoint comment number: 0 to 29999

 ss...ss Comment data: which can be up to 16 one-byte

characters. If comment data exceeds 16 characters,

then the 17th character onward will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PCM TO CMU ················· Outputs all point comments from the

communication port.

Response:

RUN [cr/lf]

PC1 = ORIGIN POS[cr/lf]

PC3 = WAIT POS[cr/lf]

 :

PC3999 = WORK100[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Point comment file 10-9

 4 Point comment file

4.2 One point comment

Read-out 3

Write 3

Format

PCmmmm

 Meaning • Expresses a specified point comment.

 • "mmmm" represents a number from 0 to 29999.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/lf]

 Values mmmmPoint comment number: 0 to 29999

 ss...ss Comment data: which can be up to 16 one-byte

characters. If comment data exceeds 16 characters,

then the 17th character onward will be deleted.

SAMPLE

SEND PC1 TO CMU ················· Outputs the specified point comment

from the communication port.

Response:

RUN [cr/lf]

PC1 = ORIGIN POS[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-10 Chapter 10 Data file description

 5 Point name file

5.1 All point names

Read-out 3 When used as a read-out file, all point names currently stored are read out.
Write 3 When used as a write file, writing is performed with a point name number.

Format

PNM

 Meaning • Expresses all point names.

DATA FORMAT

PNmmmm= assssssss [cr/lf]

PNmmmm= assssssss [cr/lf]

:

PNmmmm= assssssss [cr/lf]

PNmmmm= assssssss [cr/lf]

[cr/lf]

 Values mmmmPoint comment number: 0 to 29999

 a .. Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

 ss...ss Name data (the second character onward): Use one-

byte alphanumeric characters and _ (underscore).

Otherwise, "4.202: Input format error" occurs. If name

data exceeds 16 characters, then the 17th character

onward will be deleted.

 Name data must not be duplicate. If name data were duplicate, delete the name data with the

ealier point name number and save the name data to newly specified point name number.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PNM TO CMU ················· Outputs all point names from t h e

communication port.

Response:

RUN [cr/lf]

PN1=ORIGIN_POS [cr/lf]

PN3=WAIT_POS [cr/lf]

 :

PN 3999=WORK 100 [cr/lf]

[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

Point name file 10-11

 5 Point name file

5.2 One point name

Read-out 3

Write 3

Format

PNmmmm

 Meaning • Expresses a specified point name.

 • "mmmm" represents a number from 0 to 29999.

DATA FORMAT

PNmmmm= asssssssssssssss [cr/lf]

 Values mmmmPoint name number: 0 to 29999

 a .. Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

 ss...ss Name data (the second character onward): Use one-

byte alphanumeric characters and _ (underscore).

Otherwise, "4.202: Input format error" occurs. If name

data exceeds 16 characters, then the 17th character

onward will be deleted.

SAMPLE

SEND PN1 TO CMU ················· Outputs the specified point name from

the communication port.

Response:

RUN [cr/lf]

PN1=ORIGIN_POS [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-12 Chapter 10 Data file description

 6 Parameter file

6.1 All parameters

Read-out 3 When used as a read-out file, all parameters currently stored are read out.

Write 3
When used as a write file, only the parameters specified by labels are
written.

Format

PRM

 Meaning • Expresses all parameters.

DATA FORMAT

/parameter label/ [cr/lf]

RC=xxxxxx [cr/lf]

/parameter label/ [cr/lf]

R?=xxxxxx[cr/lf]

/parameter label/ [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

\parameter label\ [cr/lf]

C?=xxxxxx [cr/lf]

\parameter label\ [cr/lf]

R?=xxxxxx[cr/lf]

\parameter label\ [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

#parameter label# [cr/lf]

R?=xxxxxx[cr/lf]

#parameter label# [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

/parameter label/ [cr/lf]

C?O=xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

 :

[cr/lf]

 Values RC ..Indicates the entire controller.

 R? ...Robot setting (?: Robot number)

 C? ..Controller setting (?: Controller number)

 A .. Represents an axis parameter. Each data is separated by

a comma.

 O ... Represents an option board parameter. Each data is

separated by a comma.

 ■ Parameter labels are shown with 8 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

7

8

9

10

11

12

13

Parameter file 10-13

 6 Parameter file

• When writing parameter data, be sure that the servo is off.

• Parameters are already compatible with upper versions. However, parameters might not always

be compatible with lower versions (upward compatibility).

• When you attempt to load a parameter file of new version into a controller of an earlier

version, "10.214: Undefined parameter found" error may occur. In this case, you may load the

parameter by setting the "PRM SKIP" parameter to "VALID".

• As parameters whose labels are enclosed in "\" are controller configuration parameters, take

care when editing them.

• As parameters whose labels are enclosed in "#" affect robot control, take care when editing

them.

• "\" symbols may be displayed as "¥" depending on the computer environment.

SAMPLE

SEND PRM TO CMU ················· Outputs all parameters from the

communication port.

Response:

RUN [cr/lf]

‘ V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]

‘ Gripper,V0.32/Gripper,V0.32///[cr/lf]

‘ PRM(0)[cr/lf]

\CNTTYP\[cr/lf]

C1=340[cr/lf]

\YCEADR\[cr/lf]

C1=0[cr/lf]

\DRVASGN\[cr/lf]

R1A=101,102,103,104,0,0[cr/lf]

R2A=0,0,0,0,0,0[cr/lf]

R3A=0,0,0,0,0,0[cr/lf]

R4A=0,0,0,0,0,0[cr/lf]

\RBTNUM\[cr/lf]

R1=2203[cr/lf]

 :

[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

10-14 Chapter 10 Data file description

 6 Parameter file

6.2 One parameter

Read-out 3
When used as a read-out file, only the parameter specified by a label is read
out.

Write 3 When used as a write file, only the parameter specified by a label is written.

Format

/parameter label/, \parameter label\, #parameter label#

 Meaning • Parameter labels are shown with 8 alphabetic characters.

DATA FORMAT 1

/parameter label/ [cr/lf]

RC= xxxxxx [cr/lf]

[cr/lf]

DATA FORMAT 2

/parameter label/ [cr/lf]

R?= xxxxxx [cr/lf]

[cr/lf]

DATA FORMAT 3

/parameter label/ [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

[cr/lf]]

DATA FORMAT 4

\parameter label\ [cr/lf]

C?=xxxxxx [cr/lf]

[cr/lf]

DATA FORMAT5

\parameter label\ [cr/lf]

R?=xxxxxx[cr/lf]

[cr/lf]

DATA FORMAT 6

\parameter label\ [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

[cr/lf]

7

8

9

10

11

12

13

Parameter file 10-15

 6 Parameter file

DATA FORMAT 7

#parameter label# [cr/lf]

R?=xxxxxx[cr/lf]

[cr/lf]

DATA FORMAT 8

#parameter label# [cr/lf]

R?A=xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

[cr/lf]

DATA FORMAT 9

/parameter label/ [cr/lf]

C?O=xxxxxx,xxxxxx,xxxxxx,xxxxxx [cr/lf]

[cr/lf]

 Values RC ..Indicates the entire controller.

 R? ...Robot setting (?: Robot number)

 C? ..Controller setting (?: Controller number)

 A .. Represents an axis parameter. Each data is separated by

a comma.

 O ... Represents an option board parameter. Each data is

separated by a comma.

 ■ Parameter labels are shown with 8 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

• When writing parameter data, be sure that the servo is off.

• Parameters are already compatible with upper versions. However, parameters might not always

be compatible with lower versions (upward compatibility).

• When you attempt to load a parameter file of new version into a controller of an earlier

version, "10.214: Undefined parameter found" error may occur. In this case, you may load

the parameter by setting the "PRM SKIP" to "VALID". (For detail, refer to the YRCX operator’s

manual.

• As parameters whose labels are enclosed in "\" are controller configuration parameters, take

care when editing them.

• As parameters whose labels are enclosed in "#" affect robot control, take care when editing

them.

• "\" symbols may be displayed as "¥" depending on the computer environment.

SAMPLE

SEND /ACCEL / TO CMU ············ Outputs the acceleration parameter

from the communication port.

Response:

RUN [cr/lf]

/ACCEL / [cr/lf]

R1A=100, 100, 100, 100 [cr/lf]

[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

10-16 Chapter 10 Data file description

 7 Shift coordinate definition file

7.1 All shift data

Read-out 3 When used as a read-out file, all shift data currently stored are read out.
Write 3 When used as a write file, writing is performed with a shift number.

Format

SFT

 Meaning • Expresses all shift data.

DATA FORMAT

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SPm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SMm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

 :

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SPm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SMm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

[cr/lf]

 Values m ...Shift number: 0 to 39

 f ...Coordinate sign: + / - / space

 xxxxxx/yyyyyy/../rrrrrr Represent a numeric value of 7 digits or less, having 3

or less places below the decimal point.

 ■ The SPm and SMm inputs are optional in writing files.

SPm: shift coordinate range plus-side

SMm: shift coordinate range minus-side
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SFT TO CMU ················· Outputs all shift data from the

communication port.

Response:

RUN [cr/lf]

S0 = 0.000 0.000 0.000 0.000 [cr/lf]

SP0= 0.000 0.000 0.000 0.000 [cr/lf]

SM0= 0.000 0.000 0.000 0.000 [cr/lf]

S1 = 1.000 1.000 1.000 1.000 [cr/lf]

 :

SM39= 9.000 9.000 9.000 9.000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Shift coordinate definition file 10-17

 7 Shift coordinate definition file

7.2 One shift definition

Read-out 3

Write 3

Format

Sm

 Meaning • Expresses a specified shift definition.

DATA FORMAT

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr[cr/lf]

 Values m ...Shift number: 0 to 39

 f ...Coordinate sign: + / - / space

 xxxxxx/yyyyyy/../rrrrrr Represent a numeric value of 7 digits or less, having 3

or less places below the decimal point.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND S0 TO CMU ·················· Outputs the specified shift coordinate

from the communication port.

Response:

RUN [cr/lf]

S0 = 0.000 0.000 0.000 0.000[cr/lf]

SP0= 0.000 0.000 0.000 0.000[cr/lf]

SM0= 0.000 0.000 0.000 0.000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-18 Chapter 10 Data file description

 8 Hand definition file

8.1 All hand data

Read-out 3 When used as a read-out file, all hand data currently stored are read out.
Write 3 When used as a write file, writing is performed with a hand number.

Format

HND

 Meaning • Expresses all hand data.

DATA FORMAT

Hm = n,fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/lf]

 :

Hm = n,fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/lf]

[cr/lf]

 Values m ... Hand number: 0 to 31

 n .. Robot number: 1 to 4

 f ...Coordinate sign: + / - / space

 xxxxxx/yyyyyy/zzzzzz Represent a real numeric value of 7 digits or less,

having 3 or less places below the decimal point, or an

integer of 7 digits or less. (This numeric format depends

on the robot type setting and hand definition type.)

 {R} ..Indicates whether a hand is attached to the R-axis.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND HND TO CMU ················· Outputs all hand data from the

communication port.

Response:

RUN [cr/lf]

H0 = 1, 0.000, 0.000, 0.000 [cr/lf]

H1 = 1, 1.000, 1.000, 1.000 [cr/lf]

H2 = 2, 2.000, 2.000, 2.000 [cr/lf]

H3 = 2, 3.000, 3.000, 3.000 [cr/lf]

H4 = 3, 4.000, 4.000, 4.000 [cr/lf]

H5 = 3, 5.000, 5.000, 5.000 [cr/lf]

H6 = 4, 6.000, 6.000, 6.000 [cr/lf]

H7 = 4, 7.000, 7.000, 7.000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Hand definition file 10-19

 8 Hand definition file

8.2 One hand definition

Read-out 3

Write 3

Format

Hm

 Meaning • Expresses a specified hand definition.

DATA FORMAT

Hm = n,fxxxxxx, fyyyyyy, fzzzzzz ,{R}[cr/lf]

 Values m ... Hand number: 0 to 31

 n .. Robot number: 1 to 4

 f ...Coordinate sign: + / - / space

 xxxxxx/yyyyyy/zzzzzz Represent a real numeric value of 7 digits or less,

having 3 or less places below the decimal point, or an

integer of 7 digits or less. (This numeric format depends

on the robot type setting and hand definition type.)

 {R} ..Indicates whether a hand is attached to the R-axis.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND H3 TO CMU ·················· Outputs the specified hand definition

data from the communication port.

Response:

RUN [cr/lf]

H3=2, 3.000, 3.000, 3.000, R [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-20 Chapter 10 Data file description

 9 Pallet definition file

9.1 All pallet definitions

Read-out 3
When used as a read-out file, all pallet definitions currently stored are read
out.

Write 3 When used as a write file, writing is performed with a pallet number.

Format

PLT

 Meaning • Expresses all pallet definitions.

DATA FORMAT

PLm [cr/lf]

PLN = XY [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

PLP = ppppp [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

PLm [cr/lf]

 :

[cr/lf]

 Values mmmm

XY

nnn.................................

ppppp.............................

f......................................

xxxxxx/yyyyyy/../bbbbbbxr

t......................................

Pallet number: 0 to 39

Coordinate plane setting: XY coordinate plane

Number of points for each axis: positive integer

The point number used for a pallet definition. Continuous 5

points starting with the specified point are used.

 Coordinate sign: + / - / space

Represent a numeric value of 8 digits or less. When a dot is

included, this is treated as point data in "mm" units. Each piece of

data is separated by one or more spaces.

An extended hand system flag setting for SCARA robots.

1: RIGHT 2: LEFT

7

8

9

10

11

12

13

Pallet definition file 10-21

 9 Pallet definition file

 ■ Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA

robots.
 ■ Hand system flags and the first arm and the second arm rotation information are ignored during

movement where pallet definitions are used.
 ■ If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate

that there is no hand system flag.
 ■ If a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation

information, or if no value is specified, this will be processed as "0".
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PLT TO CMU ················· Outputs all pallet definitions from the

communication port.

Response:

RUN [cr/lf]

PL0[cr/lf]

PLN=XY[cr/lf]

NX = 3 [cr/lf]

NY = 4 [cr/lf]

NZ = 2 [cr/lf]

PLP= 3996[cr/lf]

P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/lf]

P[2]= 100.000 0.000 0.000 0.000 0.000 0.000 [cr/lf]

P[3]= 0.000 100.000 0.000 0.000 0.000 0.000 [cr/lf]

P[4]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/lf]

P[5]= 0.000 0.000 50.000 0.000 0.000 0.000 [cr/lf]

PL1[cr/lf]

PLN= XY[cr/lf]

NX = 3[cr/lf]

NY = 4[cr/lf]

NZ = 2[cr/lf]

PLP= 3991[cr/lf]

P[1]= 0.000 0.000 0.000 0.000 0.000 0.000 [cr/lf]

P[2]= 100.000 100.000 0.000 0.000 0.000 0.000 [cr/lf]

P[3]= 0.000 200.000 0.000 0.000 0.000 0.000 [cr/lf]

P[4]= 100.000 200.000 0.000 0.000 0.000 0.000 [cr/lf]

P[5]= 0.000 0.000 100.000 0.000 0.000 0.000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-22 Chapter 10 Data file description

 9 Pallet definition file

9.2 One pallet definition

Read-out 3

Write 3

Format

PLm

 Meaning • Expresses a specified pallet definition.

 • "m" represents a number from 0 to 39.

DATA FORMAT

PLm [cr/lf]

PLN = XY [cr/lf]

PLP = ppppp [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

[cr/lf]

 Values m

nnn.................................

ppppp.............................

f......................................

xxxxxx/yyyyyy/../bbbbbbxr

t......................................

Pallet number: 0 to 39

Number of points for each axis: positive integer

The point number used for a pallet definition. Continuous 5

points starting with the specified point are used.

 Coordinate sign: + / - / space

Represent a numeric value of 8 digits or less. When a dot is

included, this is treated as point data in "mm" units. Each piece of

data is separated by one or more spaces.

An extended hand system flag setting for SCARA robots.

1: RIGHT 2: LEFT

NOTE
 • Integers indicate point
data in "pulse" units, and
real number s in "mm"
units.

7

8

9

10

11

12

13

Pallet definition file 10-23

 9 Pallet definition file

 ■ Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA

robots.
 ■ Hand system flags and the first arm and the second arm rotation information are ignored during

movement where pallet definitions are used.
 ■ If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate

that there is no hand system flag.
 ■ If a value other than "0", "1", "-1" is specified at the first arm and the second arm rotation

information, or if no value is specified, this will be processed as "0".
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PL2 TO CMU ················· Outputs the specified pallet definition from

the communication port as shown below.

Response:

RUN [cr/lf]

PL2[cr/lf]

PLN=XY[cr/lf]

NX= 3[cr/lf]

NY= 3[cr/lf]

NZ= 2[cr/lf]

PLP= 3986[cr/lf]

P[1]= 100.000 100.000 50.000 90.000 0.000 0.000 [cr/lf]

P[2]= 200.000 100.000 50.000 90.000 0.000 0.000 [cr/lf]

P[3]= 100.000 200.000 50.000 90.000 0.000 0.000 [cr/lf]

P[4]= 200.000 200.000 50.000 90.000 0.000 0.000 [cr/lf]

P[5]= 100.000 10.000 100.000 90.000 0.000 0.000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-24 Chapter 10 Data file description

 10 General Ethernet port file

Read-out 3
When used as a read-out file, all general Ethernet port definitions are read
out.

Write 3
When used as a write file, writing is performed with a general Ethernet port
number.

Format

GEP

 Meaning • Expresses all general Ethernet port definitions.

DATA FORMAT

GPm [cr/lf]

MODE=n [cr/lf]

IPADRS= aaa.aaa.aaa.aaa [cr/lf]

PORT=ppppp [cr/lf]

EOL=e [cr/lf]

TYPE=t [cr/lf]

 :

TYPE=t [cr/lf]

[cr/lf]

 Values m

n.....................................

aaa

ppppp.............................

e

t......................................

General Ethernet port number: 0 to 7

Mode

0: Server 1: Client

IP address: 0 to 255

Port number: 0 to 65535

Termination character code

0: CRLF 1: CR

Port type (0: TCP)

When Client mode is selected in the write file,

• IP address and port number: Set the IP address and port number of the connection destination

server.

When Server mode is selected in the write file,

• IP address: IP address already set on the controller is used to communicate, so IP address setting

is unnecessary.

• Port number: Set a port number which differs from the one on the controller.

MEMO

7

8

9

10

11

12

13

General Ethernet port file 10-25

 10 General Ethernet port definition file

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND GEP TO CMU ················· Outputs all files of the general Ethernet

port from the communication port.

Response:

RUN [cr/lf]

GP0 [cr/lf]

MODE=1 [cr/lf]

IPADRS=192.168.0.1 [cr/lf]

PORT=100 [cr/lf]

EOL=0 [cr/lf]

TYPE=0 [cr/lf]

GP1 [cr/lf]

MODE=1 [cr/lf]

IPADRS=192.168.0.100 [cr/lf]

PORT=200 [cr/lf]

EOL=0 [cr/lf]

TYPE=0 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-26 Chapter 10 Data file description

 11 Input/output name file

11.1 All input/output name data

Read-out 3
When used as a read-out file, all input/output data currently stored are read
out.

Write 3 When used as a write file, writing is performed with a input/output number.

Format

ION

 Meaning • Expresses all input/output name data.

DATA FORMAT

ioNMpp(b)=assssssssssssssss [cr/lf]

ioNMpp(b)=assssssssssssssss [cr/lf]

 :

ioNMpp(b)=assssssssssssssss [cr/lf]

ioNMpp(b)=assssssssssssssss [cr/lf]

[cr/lf]

 Values io ...Input/outpu type: DI, DO, SI, SO

 pp .. Port number: 2 to 7, 10 to 15

 b .. Bit number: 0 to 7

 a .. Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

 ss...ss Name data (the second character onward): Use one-

byte alphanumeric characters and underscore "_".

Otherwise, "4.202: Input format error" occurs. If name

data exceeds 16 characters, then the 17th character

onward will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ION TO CMU ················· Outputs all input/output name data

from the communication port.

Response:

RUN [cr/lf]

DONM2(0)=DO_PORT2_0 [cr/lf]

DONM2(1)=DO_PORT2_1 [cr/lf]

 :

SINM15(6)=SI_PORT15_6 [cr/lf]

SINM15(7)=SI_PORT15_7 [cr/lf]

[cr/lf]

END [cr/lf]

 Name data must not be duplicate. When duplicate name data is saved, delete the name data

with the ealier point number and save the name data to the point number which is specified as

the new destination to save to.

MEMO

7

8

9

10

11

12

13

Input/output name file 10-27

 11 Input/output name file

11.2 One input/output type

Read-out 3

Write Restricted*

Format

ioNM()

 Meaning • Expresses a specified input/output type.

DATA FORMAT

ioNMpp(b)=asssssssssssssss [cr/lf]

 :

ioNMpp(b)=asssssssssssssss [cr/lf]

[cr/lf]

 Values io*
pp*
d...

a ...

ss...ss

Input/output type: DI, DO, SI, SO

Port number: 2 to 7, 10 to 15

Bit number: 0 to 7

Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

Name data (the second character onward): Use one-byte

alphanumeric characters and underscore "_".

Otherwise, "4.202: Input format error" occurs. If name data

exceeds 16 characters, then the 17th character onward

will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DONM() TO CMU ·············· Outputs the specified input/output name

data from the communication port.

Response:

RUN [cr/lf]

DONM2(0)=DO_PORT2_0 [cr/lf]

DONM2(1)=DO_PORT2_1 [cr/lf]

 :

DONM10(6)=DO_PORT10_6 [cr/lf]

DONM10(7)=DO_PORT10_7 [cr/lf]

[cr/lf]

END [cr/lf]

NOTE
*Readable input/output

type and Port number

 • DI: Up to Port14

 • DO: Up to Port 10

 • SI, SO: Up to Port 15

7

8

9

10

11

12

13

10-28 Chapter 10 Data file description

 11 Input/output name file

11.3 One input/output port

Read-out 3

Write Restricted*

Format

ioNMpp()

 Meaning • Expresses a specified input/output type and port number.

DATA FORMAT

ioNMpp(b)=asssssssssssssss [cr/lf]

 :

ioNMpp(b)=asssssssssssssss [cr/lf]

[cr/lf]

 Values io*
pp*
d..

a ..

ss...ss

Input/output type: DI, DO, SI, SO

Port number: 2 to 7, 10 to 15

Bit number: 0 to 7

Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

Name data (the second character onward): Use one-byte

alphanumeric characters and underscore "_".

Otherwise, "4.202: Input format error" occurs. If name data

exceeds 16 characters, then the 17th character onward

will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DONM2() TO CMU ············· Outputs the specified input/output name

data from the communication port.

Response:

RUN [cr/lf]

DONM2(0)=DO_PORT2_0 [cr/lf]

DONM2(1)=DO_PORT2_1 [cr/lf]

 :

DONM10(6)=DO_PORT10_6 [cr/lf]

DONM10(7)=DO_PORT10_7 [cr/lf]

[cr/lf]

END [cr/lf]

NOTE
*Readable input/output

type and Port number

 • DI: Up to Port14

 • DO: Up to Port 10

 • SI, SO: Up to Port 15

7

8

9

10

11

12

13

Input/output name file 10-29

 11 Input/output name file

11.4 One input/output bit

Read-out 3

Write 3
When used as a write file, writing is performed with an input/output name
number.

Format

ioNMpp(b)

 Meaning • Expresses a specified input/output type and bit number.

DATA FORMAT

ioNMpp(b)=asssssssssssssss [cr/lf]

 :

ioNMpp(b)=asssssssssssssss [cr/lf]

[cr/lf]

 Values io ...Input/outpu type: DI, DO, SI, SO

 pp .. Port number: 2 to 7, 10 to 15

 b .. Bit number: 0 to 7

 a .. Name data (the first character): Use only one-byte

alphabetic character. Otherwise, "4.202: Input format

error" occurs.

 ss...ss Name data (the second character onward): Use one-

byte alphanumeric characters and underscore "_".

Otherwise, "4.202: Input format error" occurs. If name

data exceeds 16 characters, then the 17th character

onward will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DONM2(0) TO CMU ············ Outputs the specified input/output name

data from the communication port.

Response:

RUN [cr/lf]

DONM2(0)=DO_PORT2_0 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-30 Chapter 10 Data file description

 12 Area check output file

12.1 All area check output data

Read-out 3
When used as a read-out file, all area check output data currently stored are
read out.

Write 3
When used as a write file, writing is performed with an area check output
number.

Format

ACO

 Meaning • Expresses all area check output data.

DATA FORMAT

ACm=r,p1,p2,t,n,l [cr/lf]

ACm=r,p1,p2,t,n,l [cr/lf]

 :

ACm=r,p1,p2,t,n,l [cr/lf]

ACm=r,p1,p2,t,n,l [cr/lf]

[cr/lf]

 Values m

r

p1...................................

p2...................................

t......................................

n.....................................

l......................................

Area check output number: 0 to 31

Robot number: 0 to 4 (0: Invalid)

Comparison point number 1: 0 to 29999

Comparison point number 2: 0 to 29999

Port type

0: DO/SO 1: DO 2: SO 3: MO

Port number: 20 to 277

Logic

0: OFF 1: ON

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ACO TO CMU ················· Outputs all area check output data

from the communication port.

Response:

RUN [cr/lf]

AC0=1,0,1,0,20,0 [cr/lf]

AC1=2,100,110,0,50,0 [cr/lf]

 :

AC30=1,20,21,0,20,0 [cr/lf]

AC31=1,50,51,0,100,0 [cr/lf]

[cr/lf]

END[cr/lf]

7

8

9

10

11

12

13

 file 10-31

 12 Area check output file

12.2 One area check output definition

Read-out 3

Write 3
When used as a write file, writing is performed with an area check output
number.

Format

ACm

 Meaning • Expresses a specified area check output definition.

DATA FORMAT

ACm=r,p1,p2,t,n,l [cr/lf]

 Values m

r

p1...................................

p2...................................

t......................................

n.....................................

l......................................

Area check output number: 0 to 31

Robot number: 0 to 4 (0: Invalid)

Comparison point number 1: 0 to 29999

Comparison point number 2: 0 to 29999

Port type

0: DO/SO 1: DO 2: SO 3: MO

Port number: 20 to 277

Logic

0: OFF 1: ON

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND AC0 TO CMU ················· Outputs specified area check output

data from the communication port.

Response:

RUN [cr/lf]

AC0=1,0,1,0,20,0 [cr/lf]

END[cr/lf]

7

8

9

10

11

12

13

10-32 Chapter 10 Data file description

 13 All file

13.1 All file

Read-out 3

Write 3

Format

ALL

 Meaning Expresses the minimum number of data files required to operate the robot system.

DATA FORMAT

[PGM] ····All program format

NAME=< program name>

PGN=mmm

aaaa ····aaaaaaaa [cr/lf]

 :

aaaa ····aaaaaaaa [cr/lf]

[cr/lf]

[PNT] ····All point format

Pmmmm=fxxxxxx fyyyyyy fzzzzzz faaaaaa fbbbbbb t [cr/lf]

 :

Pmmmm=fxxxxxx fyyyyyy fzzzzzz faaaaaa fbbbbbb t [cr/lf]

[cr/lf]

[PCM] All point comment format

PCmmmm= ssssssssssssssss [cr/lf]

 :

PCmmmm= ssssssssssssssss [cr/lf]

[cr/lf]

[PNM] ····All point name format

PNmmmm= asssssssssssssss [cr/lf]

 :

PNmmmm= asssssssssssssss [cr/lf]

[cr/lf]

[PRM] ····All parameter format

/parameter label/ [cr/lf]

RC=xxxxxx [cr/lf]

 :

#parameter label# [cr/lf]

R?=xxxxxx [cr/lf]

[cr/lf]

[SFT] ····All shift format

Sm= fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

 :

SMm= fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

[cr/lf]

[HND] ····All hand format

Hm= n, fxxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/lf]

 :

Hm= n, fxxxxxx, fyyyyyy, fzzzzzz ,{R} [cr/lf]

[cr/lf]

NOTE
 • F o r d e t a i l s o f e a c h
fi le, refer to that fi le 's
explanation.

7

8

9

10

11

12

13

All file 10-33

 13 All file

[PLT] ····All pallet format

PLm [cr/lf]

 :

P[5]= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t [cr/lf]

[cr/lf]

[GEP] ····All general Ethernet port format

MODE=n [cr/lf]

 :

TYPE=t [cr/lf]

[cr/lf]

[ION] ····All input/output name format

ioNMpp(b)=asssssssssssssss [cr/lf]

 :

ioNMpp(b)=asssssssssssssss [cr/lf]

[cr/lf]

[ACO] ····All area check output format

ACm=r,p1,p2,t,n,l [cr/lf]

 :

ACm=r,p1,p2,t,n,l [cr/lf]

[cr/lf]

[END] ····All file end

• In readout files, only items whose data is saved in the controller is readout.

• In writing files, [xxx] determines the data file's format, and this format is saved at the controller.

Example: [HND]…All text data up the next [xxx] is saved at the controller as "all hand" format

data.

SAMPLE

SEND ALL TO CMU ················· Outputs all files of the entire system from

the communication port.

SEND CMU TO ALL ················· Inputs all files of the entire system from the

communication port.

MEMO

7

8

9

10

11

12

13

10-34 Chapter 10 Data file description

 14 Program directory file

14.1 Entire program directory

Read-out 3
When used as a read-out file, information on entire program directory is read
out.

Write - This file cannot be used as a write file.

Format

DIR

 Meaning • Expresses entire program directory.

DATA FORMAT

nnn, yy/mm/dd, hh:mm, bbbbbbb, llll, xx, ff, sssss…sssssssss [cr/lf]

 :

nnn, yy/mm/dd, hh:mm, bbbbbbb, llll, xx, ff, sssss…sssssssss [cr/lf]

[cr/lf]

 Values nnn.................................

yy/mm/dd

hh:mm

bbbbbb...........................

xx

ff.....................................

sss…ssssss

Program number: 1 to 100

Date when the program was updated

Time when the program was updated

Byte size of program: 7 digits

File attribute

RW: Readable/writable

RO: Not writable (read only)

H: Hidden file

Flag

m: Main program

c: Current program

s: Sequence program

Program name: shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DIR TO CMU ················· Outputs information on all program

directory from the communication port.

Response:

RUN [cr/lf]

1, 15/01/10,10:14,100,24,RW,m,SAMPLE1 [cr/lf]

2, 15/01/18,18:00,50,18,RO,,SAMPLE2 [cr/lf]

3, 15/02/11,20:15,200,58,RW,c,SAMPLE3 [cr/lf]

4, 15/02/11,19:03,28,15,H,,SAMPLE4 [cr/lf]

10, 15/03/02, 20:21,592,288,RW,,SAMPLE10 [cr/lf]

24, 15/01/18,13:19,10,3,RW,,SAMPLE24 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Program directory file 10-35

 14 Program directory file

14.2 One program directory

Read-out 3

Write -

Format

<<program name>>

 Meaning • Expresses information on one program.

 • The program name is enclosed in << >> (double brackets).

DATA FORMAT

nnn, yy/mm/dd, hh:mm, bbbbbbb, llll, xx, ff, sssss…sssssssss [cr/lf]

 Values nnn.................................

yy/mm/dd

hh:mm

bbbbbb...........................

xx

ff.....................................

sss…ssssss

Program number: 1 to 100

Date when the program was updated

Time when the program was updated

Byte size of program: 7 digits

File attribute

RW: Readable/writable

RO: Not writable (read only)

H: Hidden file

Flag

m: Main program

c: Current program

s: Sequence program

Program name: shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore)

SAMPLE

SEND <<TEST>> TO CMU ············ Outputs information on the specified

program from the communication port.

Response:

RUN [cr/lf]

1, 15/01/10,10:14,100,24,RW,m,SAMPLE1 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-36 Chapter 10 Data file description

 15 Parameter directory file

15.1 Entire parameter directory

Read-out 3
When used as a read-out file, information on entire parameter directory is read
out.

Write - This file cannot be used as a write file.

Format

DPM

 Meaning • Expresses entire parameter directory.

DATA FORMAT

\mmmmmm\ a m n1 n2 n3 … n10 n11 n12 uuuuuu [cr/lf]

/mmmmmm/ a m n1 n2 n3 … n10 n11 n12 uuuuuu [cr/lf]

#mmmmmm# a m n1 n2 n3 … n10 n11 n12 uuuuuu [cr/lf]

[cr/lf]

 Values mmmmmm

a

m

n*

uuuuuu...........................

Parameter label: 8 characters or less having some symbols

Attribute

Input method

0: Direct input

1 to 12: Selective input

Input range

n1: Minimum value

n2: Maximum value

Selective input value (n1 to n12)

Units

 ■ Parameter labels are shown with 6 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

 "\" symbols may be shown as "¥" depending on the computer environment.

SAMPLE

SEND DPM TO CMU ················· Outputs information on all parameter

directory from the communication port.

Response:

RUN [cr/lf]

‘PRM(0) [cr/lf]

\CNTTYP\ 16460 0 0 2147493647 [cr/lf]

\YCEADR\ 16396 0 0 99 [cr/lf]

\DRVASGN\ 16398 0 0 9906 [cr/lf]

 :

/IOORGOUT/ 2052 0 0 27 [cr/lf]

/IOSRVOUT/ 2052 0 0 27 [cr/lf]

/GRPORGIN/ 2052 0 0 27 [cr/lf]

[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

Machine reference file 10-37

 16 Machine reference file

16.1 Machine reference (axes: sensor method, stroke-end method)

Read-out 3

Write -

Format

MRF

 Meaning • Expresses all machine reference values of axes whose return-to-origin method is set

 as "Sensor" or "Stroke-end".

DATA FORMAT

RnA=mmm,mmm,mmm,mmm,mmm,mmm [cr/lf]

 :

RnA= mmm,mmm,mmm,mmm,mmm,mmm [cr/lf]

[cr/lf]

 Values n .. Robot number: 1 to 4

 mmmMachine reference value: 0 to 100

 This file reads out the machine reference values of the axes set to the robots.

 Example: When the 1st through 6th axes of the robot 1 and 1st and 3rd axes of the robot 2 are

connected, the data is shown as follows.

 R1A = mmm, mmm, mmm, mmm, mmm, mmm

 R2A = mmm, mmm

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MRF TO CMU ················· Outputs all machine reference data

from the communication port.

Response:

RUN[cr/lf]

R1A=53,47,58,25,55,59 [cr/lf]

 :

R4A=52,58,41,38,61,50 [cr/lf]

[cr/lf]

END[cr/lf]

MEMO

7

8

9

10

11

12

13

10-38 Chapter 10 Data file description

 16 Machine reference file

16.2 Machine reference (axes: mark method)

Read-out 3

Write -

Format

ARP

 Meaning • Expresses all machine reference values of axes whose return-to-origin method is set

 as "Mark".

DATA FORMAT

RnA=mmm,mmm,mmm,mmm,mmm,mmm [cr/lf]

 :

RnA= mmm,mmm,mmm,mmm,mmm,mmm [cr/lf]

[cr/lf]

 Values n .. Robot number: 1 to 4

 mmm Machine reference value: 0 to 100

 This file reads out the machine reference values of the axes set to the robots.

 Example: When the 1st through 6th axes of the robot 1 and 1st and 3rd axes of the robot 2 are

connected, the data is shown as follows.

 R1A = mmm, mmm, mmm, mmm, mmm, mmm

 R2A = mmm, mmm

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ARP TO CMU ················· Outputs all machine reference data

from the communication port.

Response:

RUN[cr/lf]

R1A=53,47,58,25,55,59 [cr/lf]

 :

R4A=52,58,41,38,61,50 [cr/lf]

[cr/lf]

END[cr/lf]

MEMO

7

8

9

10

11

12

13

System configuration information file 10-39

 17 System configuration information file

Read-out 3

Write -

Format

CFG

 Meaning • Expresses all system configuration information.

DATA FORMAT

Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff-ff [cr/lf]

Cm:nnnn, s, b, kkkkk, ff-ff-ff-ff-ff-ff [cr/lf]

 :

Rr:aaaa,hhhhhh [cr/lf]

Rr:aaaa,hhhhhh [cr/lf]

[cr/lf]

 Values m

nnn.................................

s

b.....................................

kkkkkk

ff.....................................

r

aaaa

hhhhhh...........................

Controllr number: 1 onward

Controller ID number

Specification

G: CE specification

L: Normal specification

Brake power

I: Internal

E: External

Memory size

MAC address

Robot number: 1 to 4

Robot ID number

Connected axis number

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND CFG TO CMU ················· Outputs all the system configuration

file from the communication port.

Response:

RUN [cr/lf]

C1:340,L,I,2.1MB,00-04-C6-FF-83-12[cr/lf]

R1:MULTI,1234[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-40 Chapter 10 Data file description

 18 Version information file

Read-out 3

Write -

Format

VER

 Meaning • Expresses version information.

DATA FORMAT

Cm:cv, cr-mv-dv1, dr1/dv2, dr2 [cr/lf]

 :

Cm:cv, cr-mv-dv1, dr1/dv2, dr2 [cr/lf]

[cr/lf]

 Values m ...Controllr number: 1 onward

 cv ...Host version

 cr ...Host revision (Rxxxx)

 mv ...PLD version (Vx.xx)

 dv? (?: 1,2)Driver version (Vx.xx)

 dr? (?: 1,2)Driver revision (Rxxx)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND VER TO CMU ················· Outputs all files of the version

information from the communication port.

Response:

RUN [cr/lf]

C1:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]

C2:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]

C3:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]

C4:V1.22,R0191-V1.000-V1.09,R0015/V1.09,R0015 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

 file 10-41

 19 Option board file

Read-out 3

Write -

Format

OPT

 Meaning • Expresses all option boards.

DATA FORMAT

CmOn:aaaaaa,Vb.bb [cr/lf]

CmOn:aaaaaa,Vb.bb [cr/lf]

 :

CmOn:aaaaaa,Vb.bb [cr/lf]

CmOn:aaaaaa,Vb.bb [cr/lf]

[cr/lf]

 Values m

n.....................................

aaaaaa

b.bb................................

Controllr number: 1 onward

Option board number inside the controller

Slot number: 1 to 4

Option board name

Option board version

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND OPT TO CMU ················· Outputs all files of the option boards

from the communication port.

Response:

RUN [cr/lf]

C1O1:Gripper,V0.32 [cr/lf]

C1O2:Gripper,V0.32 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-42 Chapter 10 Data file description

 20 Self check file

Read-out 3

Write -

Format

SCK

 Meaning • Expresses self check file.

DATA FORMAT

gg.bbb:mmmm [cr/lf]

gg.bbb:mmmm [cr/lf]

:

gg.bbb:mmmm [cr/lf]

gg.bbb:mmmm [cr/lf]

[cr/lf]

 Values gg

bbb.................................

mmmm

Alarm group number

Alarm classification number

Alarm occurrence location

RC: Entire controller

R?: Robot (?: Robot number)

C?: Controller (?: Controller number)

A?: Axis (?: Axis number)

M?: Driver (?: Driver number)

R?: Option board

 (?: Option board number inside the controller)

T?: Task (?: Task number)

ETH: Ethernet

CMU: RS-232CBrake power

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SCK TO CMU ················· Outputs all files of the self check

information from the communication port.

Response:

RUN [cr/lf]

12.600:C1M1 [cr/lf]

12.600:C1M2 [cr/lf]

12.600:C1M3 [cr/lf]

12.600:C1M4 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

 file 10-43

 21 Alarm history file

Read-out 3

Write -

Format

LOG

 Meaning • Expresses all alarm history.

DATA FORMAT

nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,

iiiii, jjjjjjjj, kkkkkkkk, llllllll, oooooooo, pppppppp,

pppppppp, pppppppp, pppppppp, pppppppp, pppppppp, q [cr/lf]

nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,

iiiii, jjjjjjjj, kkkkkkkk, llllllll, oooooooo, pppppppp,

pppppppp, pppppppp, pppppppp, pppppppp, pppppppp, q [cr/lf]

 :

nnn:yy/mm/dd, hh:mm:ss, gg.bbb : aaaa,c, eee : ffff,

iiiii, jjjjjjjj, kkkkkkkk, llllllll, oooooooo, pppppppp,

pppppppp, pppppppp, pppppppp, pppppppp, pppppppp, q [cr/lf]

[cr/lf]

7

8

9

10

11

12

13

10-44 Chapter 10 Data file description

 21 Alarm history file

 Values nnn.................................

yy/mm/dd

hh:mm:ss

gg

bbb.................................

aaaa

c

eee

ffff...................................

iiiii..................................

jjjjjjjj...............................

kkkkkkkk

llllllll...............................

oooooooo.......................

jjjjjjj................................

q.....................................

Alarm history number: 1 to 500

Alarm occurrence date

Alarm occurrence time

Alarm group number

Alarm classification number

Alarm occurrence location

RC: Entire controller

R?: Robot (?: Robot number)

C?: Controller (?: Controller number)

A?: Axis (?: Axis number)

M?: Driver (?: Driver number)

R?: Option board

 (?: Option board number inside the controller)

T?: Task (?: Task number)

ETH: Ethernet

CMU: RS-232C Brake power

Operation mode

I: IllegalM: Manual mode

A: Automatic mode (with programming box)

O: Automatic mode (with other devices)

CMU: RS-232C

Program number

Program execution line

Point number

Parallel input: Port o to 3 (hexadecimal)

Parallel output: Port o to 3 (hexadecimal)

Serial input: Port o to 3 (hexadecimal)

Serial output: Port o to 3 (hexadecimal)

Alarm occurrence location: A1 to A6

Hand system

0: NONE

1: RIGHT

2: LEFT

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LOG TO CMU ················· Outputs all files of the alarm history

from the communication port.

Response:

RUN [cr/lf]

1:15/03/30,08:23:05,1.100:RC,O,:,0,00000000,00000012,00000000,00000112,,,,,,, [cr/lf]

2:15/03/30,08:23:05,5.288: RC,O,:,0,00000000,00000010,00000000,00000110,,,,,,, [cr/lf]

 :

5 0 0 : 1 5 / 0 3 / 1 8 , 1 0 : 2 3 : 0 4 , 5 . 2 2 8 : T 0 1 , O , 1 7 : 3 , , 0 0 0 0 0 0 0 0 , 0 0 0 0 0 0 1 0 , 0 0 0 0 0 0 0 0 , 0 0 0 0 0 1 1 0 ,

 40119,100000,99996,39375,0,0,0 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

 file 10-45

 22 Remaining memory size file

Read-out 3

Write -

Format

MEM

 Meaning • Expresses remaining memory size

DATA FORMAT

PGM+PNT AREA=mmmmmmm/nnnnnnnn[cr/lf]

VAR AREA=xxxxx/yyyyy[cr/lf]

[cr/lf]

 Values mmmmmmmRemaining memory size of program and point area

 nnnnnnnTotal memory size of program and point area

 xxxxx Remaining memory size of variable area

 yyyyyTotal memory size of variable area

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MEM TO CMU ················· Outputs all files of the remaining memory

size from the communication port.

Response:

RUN [cr/lf]

PGM+PNT AREA=2088547 / 2100000 [cr/lf]

VAR AREA=23220 / 24000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-46 Chapter 10 Data file description

 23 Variable file

23.1 Dynamic variables

All dynamic variables

Read-out 3 When used as a read-out file, all dynamic variables currently stored are read out.
Write 3 When used as a write file, a specified dynamic variable is written.

Format

VAR

 Meaning • Expresses all dynamic variables.

DATA FORMAT

variable name t = xxxxxx [cr/lf]

variable name t = xxxxxx [cr/lf]

 :

variable name t = xxxxxx [cr/lf]

 [cr/lf]

 Values Variable name

t.................................

xxxxxx

 Global variable defined in the program. Variable name is shown

with 32 characters or less consisting of alphanumeric characters

and _ (underscore).

 Type of variable

!: Real number, %: Integer, $: Character string

Value of variable

Integer type: Integer of -2147483647 to 2147483647

Real type: Real number of 7 digits or less including decimal fractions

Character type: Character string of 255 characters or less

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND VAR TO CMU ················· Outputs all global variables from the

communication port.

Response:

RUN [cr/lf]

A%=150 [cr/lf]

B!=1.0234E1 [cr/lf]

C1$=“SAMPLE1” [cr/lf]

C2$=“SAMPLE2” [cr/lf]

[cr/lf]

END [cr/lf]C1$="CNS_1"[cr/lf]

C2$="CNS_2"[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Variable file 10-47

 23 Variable file

One dynamic variable

Read-out 3

Write 3

Format

variable name t

 Meaning • Expresses one dynamic variable.

DATA FORMAT

xxxxxx [cr/lf]

 Values Variable name

t.................................

xxxxxx

 Global variable defined in the program. Variable name is shown

with 32 characters or less consisting of alphanumeric characters

and _ (underscore).

 Type of variable

!: Real number, %: Integer, $: Character string

Value of variable

Integer type: Integer of 8 digits or less

Real type: Real number of 7 digits or less including decimal fractions

Character type: Character string of 255 characters or less

 Dynamic global variables are registered during program execution. Variables cannot be referred

to unless they are registered.

SAMPLE 1

SEND A% TO CMU [cr/lf] ·········· Outputs the specified variable A% from

the communication port.

Response:

150 [cr/lf]

SAMPLE 2

SEND CMU TO A% [cr/lf] ·········· Inputs the specified variable A% from

the communication port.

Response:

300 [cr/lf] ····················· Data input to the controller.

OK [cr/lf] ···················· Result output from the controller.

MEMO

7

8

9

10

11

12

13

10-48 Chapter 10 Data file description

 23 Variable file

23.2 Static variables

 23.2.1 Integer type static variables (SGI)

All integer type static variables

Read-out 3
When used as a read-out file, all integer type static variables currently stored
are read out.

Write 3 When used as a write file, a specified integer type static variable is written.

Format

SGI

 Meaning • Expresses all integer static variables.

DATA FORMAT

SGIn=xxxxxx [cr/lf]

SGIn=xxxxxx [cr/lf]

 :

SGIn=xxxxxx [cr/lf]

[cr/lf]

 Values n ..Integer type static variable number: 0 to 31

 xxxxxxInteger of -2147483647 to 2147483647

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SGI TO CMU ················· Outputs all integer type static

variables from the communication port.

Response:

RUN [cr/lf]

SGR0=0 [cr/lf]

SGR1=0 [cr/lf]

 :

SGR31=0 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Variable file 10-49

 23 Variable file

One integer type static variables

Read-out 3

Write 3

Format

SGIm

 Meaning • Expresses a specified integer type static variable.

 • "m" represents a number from 0 to 31.

DATA FORMAT

xxxxxx [cr/lf]

 Values xxxxxxInteger of -2147483647 to 2147483647

SAMPLE

SEND SGI1 TO CMU ················ Outputs the specified integer type

static variables (SGI1) from the

communication port.

Response:

RUN [cr/lf]

0 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-50 Chapter 10 Data file description

 23 Variable file

 23.2.2 Real type static variables (SGR)

All real type static variables

Read-out 3
When used as a read-out file, all real type static variables currently stored
are read out.

Write 3 When used as a write file, a specified real type static variable is written.

Format

SGR

 Meaning • Expresses all real type static variables.

DATA FORMAT

SGRn=xxxxxx [cr/lf]

SGRn=xxxxxx [cr/lf]

 :

SGRn=xxxxxx [cr/lf]

[cr/lf]

 Values n Real type static variable number: 0 to 31

 xxxxxx Real number of 7 digits or less including decimal fractions

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SGR TO CMU ················· Outputs all real type static variables

from the communication port.

Response:

RUN [cr/lf]

SGI0=0 [cr/lf]

SGI1=0 [cr/lf]

 :

SGI31=0 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

Variable file 10-51

 23 Variable file

One real type static variables

Read-out 3

Write 3

Format

SGRm

 Meaning • Expresses a specified real type static variable.

 • "m" represents a number from 0 to 31.

DATA FORMAT

xxxxxx [cr/lf]

 Values xxxxxx Real number of 7 digits or less including decimal fractions

SAMPLE

SEND SGR1 TO CMU ················ Outputs the specified real type static

variables (SGR1) from the communication

port.

Response:

RUN [cr/lf]

0 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-52 Chapter 10 Data file description

 24 Constant file

24.1 One character string

Read-out 3 When used as a read-out file, the specified character string is read out.
Write - This file cannot be used as a write file.

Format

"character string"

 Meaning • Expresses a specified character string.

DATA FORMAT

sssss...ssssss[cr/lf]

 Values sssss...ssssssCharacter string: 255 characters or less

 ■ Output of " symbol (double quotation) is shown with successive " symbol.

SAMPLE

SEND """OMRON ROBOT""" TO CMU

 ····················· Outputs the specified character string

from the communication port.

Response:

"OMRON ROBOT"[cr/lf]

7

8

9

10

11

12

13

Array variable file 10-53

 25 Array variable file

25.1 All array variables

Read-out 3 When used as a read-out file, all array variables are read out.
Write 3 When used as a write file, a specified array variable is written.

Format

ARY

 Meaning • Expresses all array variables.

DATA FORMAT

variable name t(l{,m{,n}}) = xxxxxx [cr/lf]
variable name t(l{,m{,n}}) = xxxxxx [cr/lf]
 :
variable name t(l{,m{,n}}) = xxxxxx [cr/lf]
[cr/lf]

 Values Variable name

t.............................

l, m, n

xxxxxx

 Global variable defined by the DIM statement in the program.

Variable name is shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore).

 Type of variable

!: Real number, %: Integer, $: Character string

Indicate array arguments

Differs depending on the type of array variable.

Integer type: Integer of -2147483647 to 2147483647

Real type: Real number of 7 digits or less including decimal fractions

Character type: Character string of 255 characters or less

 ■ VA line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND ARY TO CMU ················· Outputs all global array variables

from the communication port.

Response:

RUN [cr/lf]

A!(0)=0 [cr/lf]

A!(1)=1.E2 [cr/lf]

A!(2)=2.E2 [cr/lf]

B%(0,0)=0 [cr/lf]

B%(0,1)=1111 [cr/lf]

B%(1,0)=2222 [cr/lf]

B%(1,0)=3333 [cr/lf]

C$(0,0,0)= “ARY1” [cr/lf]

C$(0,0,1)= “ARY2” [cr/lf]

C$(0,1,0)= “ARY3” [cr/lf]

C$(0,1,1)= “ARY4” [cr/lf]

C$(1,0,0)= “ARY5” [cr/lf]

C$(1,0,1)= “ARY6” [cr/lf]

C$(1,1,0)= “ARY7” [cr/lf]

C$(1,1,1)= “ARY8” [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-54 Chapter 10 Data file description

 25 Array variable file

25.2 One array variable

Read-out 3

Write 3

Format

variable name t(l {,m {,n }})

 Meaning • Expresses one array variable.

DATA FORMAT

xxxxxx [cr/lf]

 Values Variable name

t.............................

l, m, n

xxxxxx

 Global variable defined by the DIM statement in the program.

Variable name is shown with 32 characters or less consisting of

alphanumeric characters and _ (underscore).

 Type of variable

!: Real number, %: Integer, $: Character string

Indicate array arguments

Differs depending on the type of array variable.

Integer type: Integer of -2147483647 to 2147483647

Real type: Real number of 7 digits or less including decimal fractions

Character type: Character string of 255 characters or less

 Array variables defined by the DIM statement are registered during compiling. Array variables

cannot be referred to unless they are registered.

SAMPLE

SEND C1$(2) TO CMU ·············· Outputs the specified array variable

C1$(2) from the communication port.

Response:

RUN [cr/lf]

OMRON ROBOT [cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

DI file 10-55

 26 DI file

26.1 All DI information

Read-out 3 When used as a read-out file, all DI information is read out.
Write - This file cannot be used as a write file.

Format

DI()

 Meaning • Expresses all DI (parallel input variable) information.

DATA FORMAT

DI0()=&Bnnnnnnnn [cr/lf]

DI1()=&Bnnnnnnnn [cr/lf]

 :

DI27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DI() TO CM ················· Outputs all DI information from the

communication port.

Response:

DI0()=&B10001001[cr/lf]

DI1()=&B00000010[cr/lf]

DI2()=&B00000000[cr/lf]

 :

DI7()=&B00000000[cr/lf]

DI10()=&B00000000[cr/lf]

DI11()=&B00000000[cr/lf]

DI12()=&B00000000[cr/lf]

 :

DI17()=&B00000000[cr/lf]

DI20()=&B00000000[cr/lf]

 :

DI26()=&B00000000[cr/lf]

DI27()=&B00000000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-56 Chapter 10 Data file description

 26 DI file

26.2 One DI port

Read-out 3 When used as a read-out file, the specified DI port status is read out.
Write - This file cannot be used as a write file.

Format

DIm()

 Meaning • Expresses the status of one DI port.

DATA FORMAT

DIm()=&Bnnnnnnnn[cr/lf]

 Values m ...0 to 7, 10 to 17, 20 to 27

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

SAMPLE

SEND DI5() TO CMU ··············· Outputs the DI5 port status from the

communication port.

Response:

RUN [cr/lf]

DI15()=&B00000000 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

DO file 10-57

 27 DO file

27.1 All DO information

Read-out 3 When used as a read-out file, all DO information is read out.
Write 3 When used as a write file, the value is written to the specified DO port.

Format

DO()

 Meaning • Expresses all DO (parallel output variable) information.

 • Writing to DO0() and DO1() is prohibited.

DATA FORMAT

DO0()=&Bnnnnnnnn [cr/lf]

DO1()=&Bnnnnnnnn [cr/lf]

 :

DO27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DO() TO CMU ················ Outputs all DO information from the

communication port.

Response:

RUN [cr/lf]

DO0()=&B10001001[cr/lf]

DO1()=&B00000010[cr/lf]

DO2()=&B00000000[cr/lf]

 :

DO7()=&B00000000[cr/lf]

DO10()=&B00000000[cr/lf]

DO11()=&B00000000[cr/lf]

DO12()=&B00000000[cr/lf]

 :

DO17()=&B00000000[cr/lf]

DO20()=&B00000000[cr/lf]

 :

DO26()=&B00000000[cr/lf]

DO27()=&B00000000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-58 Chapter 10 Data file description

 27 DO file

27.2 One DO port

Read-out 3 When used as a read-out file, the specified DO port status is read out.
Write 3 When used as a write file, the value is written to the specified DO port.

Format

DOm()

 Meaning • Expresses the status of one DO port.

 • Writing to DO0() and DO1() is prohibited.

 • Readout file

DATA FORMAT

DOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA FORMAT

&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

 k ..Integer from 0 to 255

 Writing to DO0() and DO1() is prohibited. Only referencing is permitted.

SAMPLE

SEND DO5() TO CMU ··············· Outputs the DO5 port status from the

communication port.

Response:

RUN [cr/lf]

DO5()=&B00000000[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

MO file 10-59

 28 MO file

28.1 All MO information

Read-out 3 When used as a read-out file, all MO information is read out.
Write 3 When used as a write file, the value is written to the specified MO port.

Format

MO()

 Meaning • Expresses all MO (internal output variable) information.

 • Writing to MO30() and DO37() is prohibited.

DATA FORMAT

MO0()=&Bnnnnnnnn [cr/lf]

MO1()=&Bnnnnnnnn [cr/lf]

 :

MO37()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MO() TO CMU ················ Outputs all MO information from the

communication port.

Response:

RUN [cr/lf]

MO0()=&B10001001 [cr/lf]

MO1()=&B00000010 [cr/lf]

MO2()=&B00000000 [cr/lf]

:

MO7()=&B00000000 [cr/lf]

MO10()=&B00000000 [cr/lf]

MO11()=&B00000000 [cr/lf]

MO12()=&B00000000 [cr/lf]

:

MO17()=&B00000000 [cr/lf]

MO20()=&B00000000 [cr/lf]

:

MO27()=&B00000000 [cr/lf]

MO30()=&B00000000 [cr/lf]

:

MO36()=&B00000000 [cr/lf]

MO37()=&B00000000 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-60 Chapter 10 Data file description

 28 MO file

28.2 One MO port

Read-out 3 When used as a read-out file, the specified MO port status is read out.
Write 3 When used as a write file, the value is written to the specified MO port.

Format

MOm()

 Meaning • Expresses the status of one MO port.

 • Writing to MO30() to MO37() is prohibited.

 • Readout file

DATA FORMAT

MOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA FORMAT

&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27, 30 to 37

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

 k ..Integer from 0 to 255

 Writing to MO30() to MO37() is prohibited. Only reference is permitted.

SAMPLE

SEND MO5() TO CMU ··············· Outputs the MO5 port status from the

communication port.

Response:

RUN [cr/lf]

MO5()=&B00000000[cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

LO file 10-61

 29 LO file

29.1 All LO information

Read-out 3 When used as a read-out file, all LO information is read out.
Write 3 When used as a write file, the value is written to the specified LO port.

Format

LO()

 Meaning • Expresses all LO (internal output variable) information.

DATA FOMAT

LO0()=&Bnnnnnnnn [cr/lf]

LO1()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LO() TO CMU ················ Outputs all LO status from the

communication port.

Response:

RUN [cr/lf]

LO0()=&B10001001 [cr/lf]

LO1()=&B00100100 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-62 Chapter 10 Data file description

 29 LO file

29.2 One LO port

Read-out 3 When used as a read-out file, the specified LO port status is read out.
Write 3 When used as a write file, the value is written to the specified LO port.

Format

LOm()

 Meaning • Expresses the status of one LO port.

 • Readout file

DATA FORMAT

LOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA FORMAT

&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0, 1

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number)

 k ..Integer from 0 to 255

SAMPLE

SEND LO0() TO CMU ··············· Outputs the LO0 port status from the

communication port.

Response:

RUN [cr/lf]

LO0()=&B00000000 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

TO file 10-63

 30 TO file

30.1 All TO information

Read-out 3 When used as a read-out file, all TO information is read out.
Write 3 When used as a write file, the value is written to the specified TO port.

Format

TO()

 Meaning • Expresses all TO (timer output variable) information.

DATA FORMAT

TO0()=&Bnnnnnnnn [cr/lf]

TO1()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND TO() TO CMU ················ Outputs all TO status from the

communication port.

Response:

RUN [cr/lf]

TO0()=&B10001001 [cr/lf]

TO1()=&B10001001 [cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-64 Chapter 10 Data file description

 30 TO file

30.2 One TO port

Read-out 3 When used as a read-out file, the specified TO port status is read out.
Write 3 When used as a write file, the value is written to the specified TO port.

Format

TOm()

 Meaning • Expresses the status of one TO port.

 • Readout file

DATA FORMAT

TOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA FORMAT

&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0, 1

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

 k ..Integer from 0 to 255

SAMPLE 1

SEND TO0() TO CMU ··············· Outputs the TO0 port status from the

communication port.

Response:

RUN [cr/lf]

TO0()=&B00000000 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

SI file 10-65

 31 SI file

31.1 All SI information

Read-out 3 When used as a read-out file, all SI information is read out.
Write - This file cannot be used as a write file.

Format

SI()

 Meaning • Expresses all SI (serial input variable) information.

DATA FORMAT

SI0()=&Bnnnnnnnn [cr/lf]

SI1()=&Bnnnnnnnn [cr/lf]

 :

SI27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SI() TO CMU ················ Outputs all SI status from the

communication port.

Response:

RUN [cr/lf]

SI0()=&B10001001[cr/lf]

SI1()=&B00000010[cr/lf]

SI2()=&B00000000[cr/lf]

 :

SI7()=&B00000000[cr/lf]

SI10()=&B00000000[cr/lf]

SI11()=&B00000000[cr/lf]

SI12()=&B00000000[cr/lf]

 :

SI17()=&B00000000[cr/lf]

SI20()=&B00000000[cr/lf]

 :

SI26()=&B00000000[cr/lf]

SI27()=&B00000000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-66 Chapter 10 Data file description

 31 SI file

31.2 One SI port

Read-out 3 When used as a read-out file, the specified SI port status is read out.
Write - This file cannot be used as a write file.

Format

SIm()

 Meaning • Expresses the status of one SI port.

DATA FORMAT

SIm()=&Bnnnnnnnn[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

SAMPLE

SEND SI5() TO CMU ··············· Outputs the SI5 port status from the

communication port.

Response:

RUN [cr/lf]

SI5()=&B00000000 [cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

SO file 10-67

 32 SO file

32.1 All SO information

Read-out 3 When used as a read-out file, all SO information is read out.
Write 3 When used as a write file, the value is written to the specified SO port.

Format

SO()

 Meaning • Expresses all SO (serial output variable) information.

 • Writing to SO0() and SO1() is prohibited.

DATA FORMAT

SO0()=&Bnnnnnnnn [cr/lf]

SO1()=&Bnnnnnnnn [cr/lf]

 :

SO27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SO() TO CMU ················ Outputs all SO status from the

communication port.

Response:

RUN [cr/lf]

SO0()=&B10001001[cr/lf]

SO1()=&B00000010[cr/lf]

SO2()=&B00000000[cr/lf]

 :

SO7()=&B00000000[cr/lf]

SO10()=&B00000000[cr/lf]

SO11()=&B00000000[cr/lf]

SO12()=&B00000000[cr/lf]

 :

SO17()=&B00000000[cr/lf]

SO20()=&B00000000[cr/lf]

 :

SO26()=&B00000000[cr/lf]

SO27()=&B00000000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-68 Chapter 10 Data file description

 32 SO file

32.2 One SO port

Read-out 3 When used as a read-out file, the specified SO port status is read out.
Write 3 When used as a write file, the value is written to the specified SO port.

Format

SOm()

 Meaning • Expresses the output status of one SO port.

 • Writing to SO0() and SO1() is prohibited.

 • Readout file

DATA FORMAT

SOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA FORMAT

&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27

 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port number).

 k ..Integer from 0 to 255

 Writing to SO0() and SO1() is prohibited. Only reference is permitted.

SAMPLE

SEND SO5() TO CMU ··············· Outputs the SO5 port status from the

communication port.

Response:

RUN [cr/lf]

SO5()=&B00000000 [cr/lf]

END [cr/lf]

MEMO

7

8

9

10

11

12

13

SIW file 10-69

 33 SIW file

33.1 All SIW data

Read-out 3
When used as a read-out file, all SIW information is read out in hexadecimal
digit.

Write - This file cannot be used as a write file.

Format

SIW()

 Meaning • Expresses all SIW (serial word input) data.

DATA FORMAT

SIW(0)=&Hnnnn [cr/lf]

SIW(1)=&Hnnnn [cr/lf]

 :

SIW(15)=&Hnnnn [cr/lf]

[cr/lf]

 Values n ..0 to 9, A to F: 4 digits (hexadecimal)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SIW() TO CMU ··············· Outputs all SIW data from the

communication port.

Response:

RUN [cr/lf]

SIW(0)=&H1001[cr/lf]

SIW(1)=&H0010[cr/lf]

SIW(2)=&H0000[cr/lf]

 :

SIW(15)=&H0000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-70 Chapter 10 Data file description

 33 SIW file

33.2 One SIW data

Read-out 3
When used as a read-out file, the specified SIW status is read out in
hexadecimal digit.

Write - This file cannot be used as a write file.

Format

SIW(m)

 Meaning • Expresses one SIW status.

DATA FORMAT

SIW(m)=&Hnnnn [cr/lf]

 Values m ...0 to 15

 n ..0 to 9, A to F: 4 digits (hexadecimal)

SAMPLE

SEND SIW(5) TO CMU ·············· Outputs SIW(5) from the communication

port.

Response:

RUN [cr/lf]

SIW(5)=&H1001[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

SOW file 10-71

 34 SOW file

34.1 All SOW

Read-out 3
When used as a read-out file, all SOW information is read out in
hexadecimal digit.

Write 3 When used as a write file, the value is written to the specified SOW port.

Format

SOW()

 Meaning • Expresses all SOW (serial word output) data.

 • Writing to SOW(0) and SOW(1) is prohibited.

DATA FORMAT

SOW(0)=&Hnnnn [cr/lf]

SOW(1)=&Hnnnn [cr/lf]

 :

SOW(15)=&Hnnnn [cr/lf]

[cr/lf]

 Values n ..0 to 9, A to F: 4 digits (hexadecimal)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SOW() TO CMU ··············· Outputs all SOW data from the

communication port.

Response:

RUN [cr/lf]

SOW(0)=&H1001[cr/lf]

SOW(1)=&H0010[cr/lf]

SOW(2)=&H0000[cr/lf]

 :

SOW(15)=&H0000[cr/lf]

[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

10-72 Chapter 10 Data file description

 34 SOW file

34.2 One SOW data

Read-out 3
When used as a read-out file, the specified SOW port status is read out in
hexadecimal digit.

Write 3 When used as a write file, the value is written to the specified SOW port.

Format

SOW(m)

 Meaning • Expresses one SOW status.

 • Writing to SOW(0) and SOW(1) is prohibited.

 • Readout file

DATA FORMAT

SOW(m)=&Hnnnn [cr/lf]

 • Write file

DATA FORMAT

&Hnnnn

 Values m ...2 to 15

 n ..0 to 9, A to F: 4 digits (hexadecimal)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE 1

SEND SOW(5) TO CMU ·············· Outputs SOW(5) from the communication

port.

Response:

RUN [cr/lf]

SOW(5)=&H1001[cr/lf]

END [cr/lf]

7

8

9

10

11

12

13

EOF file 10-73

 35 EOF file

35.1 EOF data

Read-out 3 When used as a read-out file, ^Z (=1Ah) is read out.
Write - This file cannot be used as a write file.

Format

EOF

 Meaning • This file is a special file consisting only of a ^Z (=1Ah) code. When transmitting data

to an external device through the communication port, the EOF data can be used to

add a ^Z code at the end of file.

DATA FORMAT

^Z (=1Ah)

SAMPLE

SEND PGM TO CMU

SEND EOF TO CMU ················· Outputs EOF data from the communication

port.

NAME=TEST1[cr/lf]

A=1[cr/lf]

 :

HALT[cr/lf]

[cr/lf]

^Z

 A "^Z" code may be required at the end of the transmitted file, depending on the specifications

of the receiving device and application.
MEMO

7

8

9

10

11

12

13

10-74 Chapter 10 Data file description

 36 Serial port communication file

36.1 Serial port communication file

Read-out 3

Write 3

Format

CMU

 Meaning • Expresses the serial communication port.

 • Depends on the various data formats.

SAMPLE

SEND PNT TO CMU ················· Outputs all point data from the

communication port.

SEND CMU TO PNT ················· Inputs all point data from the

communication port.

7

8

9

10

11

12

13

Ethernet port communication file 10-75

 37 Ethernet port communication file

37.1 Ethernet port communication file

Read-out 3

Write 3

Format

ETH

 Meaning • Expresses the Ethernet port.

 • Depends on the various data formats.

SAMPLE

SEND PNT TO ETH ················· Outputs all point data from the

Ethernet port.

SEND ETH TO PNT ················· Inputs all point data from the Ethernet

port.

Chapter 11

User program examples

1 1 Basic operation....................................... 11-1
2 2 Application ... 11-8

7

8

9

10

11

12

13

Basic operation 11-1

 1 Basic operation

1.1 Directly writing point data in program

 ■ Overview

The robot arm can be moved by PTP (point-to-point) motion by directly specifying point data in the

program.

Processing flow

300.000 300.000 50.000 90.000 0.000 0.000 PTP movement

300.000 100.000 0.000 0.000 0.000 0.000 PTP movement

200.000 200.000 10.000 -90.000 0.000 0.000 PTP movement

START

STOP

33C01-R7-00

SAMPLE

MOVE P, 300.000 300.000 50.000 90.000 0.000 0.000

MOVE P, 300.000 100.000 0.000 0.000 0.000 0.000

MOVE P, 200.000 200.000 10.000 -90.000 0.000 0.000

HALT

7

8

9

10

11

12

13

11-2 Chapter 11 User program examples

1.2 Using point numbers

 ■ Overview

Coordinate data can be specified by using point numbers in a program. Coordinate data should be

entered beforehand from the programming box or the support software "SCARA-YRCX Studio", for

example as shown below (For details, refer to the YRCX operator's manual or the SCARA-YRCX

Studio manual).

POINT DATA

P0= 0.000 0.000 0.000 ··· 0.000 0.000 0.000

P1= 100.000 0.000 150.000 ·· 30.000 0.000 0.000

P2= 0.000 100.000 50.000 ··· 0.000 0.000 0.000

P3= 300.000 300.000 0.000 ··· 0.000 0.000 0.000

P4= 300.000 100.000 100.000 ·· 90.000 0.000 0.000

P5= 200.000 200.000 0.000 ··· 0.000 0.000 0.000

Processing flow

PTP movement to P0

PTP movement to P1

PTP movement to P2

PTP movement to P3

PTP movement to P4

PTP movement to P5

START

STOP

33C02-R7-00

SAMPLE 1

MOVE P,P0

MOVE P,P1

MOVE P,P2

MOVE P,P3

MOVE P,P4

MOVE P,P5

HALT

SAMPLE 2

FOR J=0 TO 5

 MOVE P,P[J]

NEXT J

HALT

Although the same operation is executed by both SAMPLE 1 and SAMPLE 2, the program can be

shortened by using point numbers and the FOR statement.

7

8

9

10

11

12

13

Basic operation 11-3

1.3 Using shift coordinates

 ■ Overview

In the example shown below, after PTP movement from P3 to P5, the coordinate system is shifted

+140mm along the X-axis and -100mm along the Y-axis, and the robot then moves from P3 to

P5 again. The shift coordinate data is set in S1 and P3, P4, P5 are set as described in the previous

section ("1.2 Using point numbers").

SHIFT DATA

S0= 0.000 0.000 0.000 ··· 0.000

S1= 140.000 -100.000 0.000 ··· 0.000

Shift Coordinate

P3

X: 140mm shift, Y: -100mm shift

P5

P4

�

Y+

X+�

Shift Coordinate
S0

Shift Coordinate
S1

0

140

100

33C03-R7-00

SAMPLE

SHIFT S0 ····················· Shift 0.

FOR J=3 TO 5 ···················· Repeated movement from P3 to P5.

 MOVE P, P[J]

NEXT J

SHIFT S1 ····················· Changed to "shift 1".

 FOR K=3 TO 5 ················· Repeated movement occurs in the same

manner from P3 to P5.

 MOVE P,P[K]

NEXT K

HALT

7

8

9

10

11

12

13

11-4 Chapter 11 User program examples

1.4 Palletizing

1.4.1 Calculating point coordinates

 ■ Overview

Repetitive movement between a fixed work supply position P0 and each of the equally spaced

points on a pallet can be performed with the following program.

In the drawing below, points N1 to N20 are on Cartesian coordinates, consisting of 5 points

positioned at a 50mm pitch in the X-axis direction and 4 points at a 25mm pitch in the Y-axis

direction. The robot arm moves from point to point in the order of P0-N1-P0-N2...N5-P0-N6-P0...

while repeatedly moving back and forth between point P0 and each pallet.

POINT DATA

Work supply position:

 P0= 0.000 0.000 0.000 0.000 0.000 0.000

X-axis pitch:

 P10= 50.000 0.000 0.000 0.000 0.000 0.000

Y-axis pitch:

 P20= 0.000 25.000 0.000 0.000 0.000 0.000

N1 position:

 P1 = 100.000 50.000 0.000 0.000 0.000 0.000

Calculating point coordinates

X+
�

�

N16 N17 N18 N19 N20

N11 N12 N13 N14 N15

N6 N7 N8 N9 N10

N1 N2 N3 N4 N5

50

25

P0

Y+

33C04-R7-00

Processing flow

START

Movement to supply position.

Movement to P100

P100 is shifted by the pitch amount

in the X-direction.

P200=P1

P100=P1

Repeat 5 times

Repeat 4 times

Movement to P0

Movement to P100

P100=P100+P10

STOP

P200=P200+P20

P100=P200

P1 coordinates are input at P200.

P1 coordinates are input at P100.

Movement to P200

P200 is shifted by the pitch amount

in the Y-direction.

31C05-R7-00

7

8

9

10

11

12

13

Basic operation 11-5

SAMPLE

P100=P1

P200=P1

FOR J=1 TO 4

 FOR K=1 TO 5

 MOVE P,P0

 MOVE P,P100

 P100=P100+P10

 NEXT K

 P200=P200+P20

 P100=P200

NEXT J

HALT

7

8

9

10

11

12

13

11-6 Chapter 11 User program examples

1.4.2 Utilizing pallet movement

 ■ Overview

Repetitive movement between a fixed work supply position P0 and each of the equally spaced

points on a pallet can be performed with the following program. In the drawing below, points

N1 to N24 are on Cartesian coordinates, consisting of 3 points positioned at a 50mm pitch in the

X-axis direction, 4 points at a 50mm pitch in the Y-axis direction, and 2 points at 100mm pitch in

the Z-axis direction. The robot arm moves from point to point in the order of P0-N1-P0-N2...-N5-

P0-N6... while repeatedly moving back and forth between point P0 and each pallet.

POINT DATA

Work supply position:

P0= 0.000 0.000 200.000 0.000 0.000 0.000

Pallet definition:

PL0

NX= 3

NY= 4

NZ= 2

PLP= 3996:(P3996 to P4000 are used)

P[1]= 100.000 50.000 200.000 0.000 0.000 0.000

P[2]= 200.000 50.000 200.000 0.000 0.000 0.000

P[3]= 100.000 200.000 200.000 0.000 0.000 0.000

P[4]= 200.000 200.000 200.000 0.000 0.000 0.000

P[5]= 100.000 50.000 100.000 0.000 0.000 0.000

Utilizing pallet movement

P4000

P3998 P3999

P3997P3996

NZ

NX

N1 N2

N4 N5

N3

N13 N14

N16

N15

N12

N24

N11
NY

P0

33C06-R9-00

Processing flow
START

Movement to P0

Pallet movement
Repeat 24 times

STOP

Movement to supply position (P0).

Repeated for points N1 to N24.

33C07-R7-00

SAMPLE

FOR I=1 TO 24 ··················· Repeated for I = 1 to 24.

 MOVE P,P0,Z=0.000 ············ Movement of robot 1 to supply position.

 PMOVE (0,I),Z=0.000 ·········· Movement of robot 1 to pallet point.

NEXT I

MOVE P,P0,Z=0.000

HALT

7

8

9

10

11

12

13

Basic operation 11-7

1.5 DI/DO (digital input and output) operation

 ■ Overview

The following example shows input/ output signal operations through the general-purpose input/

output device.

Processing flow

Wait until DI2() is all at "0".

Set all of DO2 () to "1".

Wait 1 second.

Wait until DI2 (0) is at "1".

END

N

DI2 (1)="1"?

N＝1

N＞20

Set all of DO2 () to “0”.

Wait 0.5 seconds

N=N+1

Set DO2 (7, 6, 1, 0) to "1".

Wait 2 seconds

Set all of DO2 () to "0".

Y

Y

N

START

Wait until DI20 to DI27 become "0".

DO20 to DO27 become "1".

Wait until DI20 becomes "1".

• DO processing ends if DI2(1) is "1".

• Repeated until N=20 if DI2(1) is "0".

"1" is assigned to "N".

33C08-R7-00

SAMPLE

WAIT DI2()=0 ···················· Waits until DI20 to DI27 become "0".

DO2()=&B11111111 ················ DO20 to DO27 become "1".

DELAY 1000

WAIT DI2(0)=1 ··················· Waits until DI20 becomes "1".

N=1

*LOOP1:

IF DI2(1)=1 THEN *PROGEND ······· Jumps to *PROGEND if DI21 = 1.

IF N>20 THEN *ALLEND ············ Ended in N > 20 (jumps to *ALLEND).

DO2()=0 ····················· DO20 to DO27 become "0".

DELAY 500

N=N+1

GOTO *LOOP1 ····················· Loop is repeated.

’END ROUTINE

*PROGEND: End processing.

DO2(7,6,1,0)=&B1111 ············· Sets DO27, 26, 21, 20 to "1".

DELAY 2000 ····················· Waits 2 seconds

DO2()=0 ····················· Sets DO20 to "0".

*ALLEND:

HALT

7

8

9

10

11

12

13

11-8 Chapter 11 User program examples

 2 Application

2.1 Pick and place between 2 points

 ■ Overview

The following is an example for picking up a part at point A and placing it at point B.

Pick and place between 2 points

0

Z

P3

P1

P4

P2

Point A Point B

50mm

30mm

33C09-R7-00

 ■ Precondition

1. Set the robot movement path.

 • Movement path: P3→P1→P3→P4→P2→P4

 • Locate P3 and P4 respectively at a position 50mm above P1 and P2 and set the P1 and P2

 positions by teaching.

2. I/O signal

DO (20) Chuck (gripper) open/close = 0: open, 1: close
 • A 0.1 second wait time is set during chuck open and close.

SAMPLE: When calculating to find P3 and P4

 P3=P1 ····················· P1 coordinates are assigned to P3.

 P4=P2 ····················· P2 coordinates are assigned to P4.

 LOC3(P3)=LOC3(P3)-50.000 ····· Axis 3 data of P3 is shifted 50mm in

upper direction.

 LOC3(P4)=LOC3(P4)-50.000 ····· Axis 3 data of P4 is shifted 50mm in

upper direction.

 MOVE P,P3

 GOSUB *OPEN

 MOVE P,P1

 GOSUB *CLOSE

 MOVE P,P3

 MOVE P,P4

 MOVE P,P2

 GOSUB *OPEN

 MOVE P,P4

 HALT

*OPEN: ····················· Chuck OPEN routine.

 DO2(0)=0

 DELAY 100

 RETURN

*CLOSE: ····················· Chuck CLOSE routine.

 DO2(0)=1

 DELAY 100

 RETURN

7

8

9

10

11

12

13

Application 11-9

SAMPLE: When using arch motion

 P4=P2 ····················· P2 coordinates are assigned to P4.

 LOC3(P4)=LOC3(P4)-50.000 ····· Axis 3 data of P4 is shifted 50mm in

upper direction.

 GOSUB *OPEN

 MOVE P,P1,A3=30.000 ·········· Arch motion at A3 = 30mm.

 GOSUB *CLOSE

 MOVE P,P2,A3=30.000 ·········· Arch motion at A3 = 30mm.

 GOSUB *OPEN

 MOVE P,P4

 HALT

*OPEN: ····················· Chuck OPEN routine.

 DO2(0)=0

 DELAY 100

 RETURN

*CLOSE: ····················· Chuck CLOSE routine.

 DO2(0)=1

 DELAY 100

 RETURN

7

8

9

10

11

12

13

11-10 Chapter 11 User program examples

2.2 Palletizing

 ■ Overview

The following is an example for picking up parts supplied from the parts feeder and placing them on

a pallet on the conveyor. The pallet is ejected when full.

Palletizing

P1: Pallet reference position

Robot

Z

0

50mm

P1 P0

P0: Part supply position

Parts feeder

33C10-R7-00

 ■ Precondition

1. I/O signal

DI (30) Component detection sensor 1: Parts are supplied
DI (31) Pallet sensor 1: Pallet is loaded

DO (30) Robot hand open/close 0: Open / 1: Close
DO (31) Pallet eject 1: Eject

 Robot hand open/close time is 0.1 seconds and pallet eject time is 0.5 seconds.

2. The points below should be input beforehand as point data.

P0 Part supply position
P1 Pallet reference position
P10 X direction pitch
P11 Y direction pitch

3. Vertical movement is performed to a position Z=50mm above the pallet and parts feeder.

7

8

9

10

11

12

13

Application 11-11

SAMPLE 1: When point is calculated

WHILE -1 ····················· All repeated (-1 is always TRUE).

 FOR A=0 TO 2

 FOR B=0 TO 2

 WAIT DI(31)=1 ············ Wait until a pallet "present" status

occurs.

 WAIT DI(30)=1 ············ Wait until the supplied component

"present" status occurs.

 DO(30)=0 ················· Robot hand OPENS.

 DELAY 100

 MOVE P,P0,A3=50.000 ······ Movement of robot 1 to supply position.

 DO(30)=1 ················· Robot hand CLOSES.

 DELAY 100

 P100=P1+P10*B+P11*A ······ Next point is calculated.

 MOVE P,P100,A3=50.000 ···· Movement of robot 1 to calculated point.

 DO(30)=0 ················· Robot hand OPENS.

 DELAY 100

 NEXT

 NEXT

 DRIVE (3,0) ··················· Only 3 axis of robot 1 moves to 0.

 DO(31)=1 ····················· Pallet is ejected.

 DELAY 500

 DO(31)=0

WEND ····················· Loop is repeated.

HALT

SAMPLE 2: When using the palletizing function

* Precondition: Must be defined at pallet "0".

WHILE -1 ····················· All repeated.

 FOR A=1 TO 9

 WAIT DI(31)=1 ············ Wait until a pallet "present" status

occurs.

 WAIT DI(30)=1 ············ Wait until the supplied component

"present" status occurs.

 DO(30)=0 ················· Robot hand OPENS.

 DELAY 100

 MOVE P,P0,A3=50.000 ······ Movement of robot 1 to supply position.

 DO(30)=1 ················· Robot hand CLOSES.

 DELAY 100

 PMOVE(0,A),A3=50.000 ····· Movement of robot 1 to pallet point.

 DO(30)=0 ················· Robot hand OPENS.

 DELAY 100

 NEXT

 DRIVE(3,0) ··················· Only axis 3 of robot 1 moves to 0.

 DO(31)=1 ····················· Pallet is ejected.

 DELAY 500

 DO(31)=0

WEND ····················· Loop is repeated.

HALT

7

8

9

10

11

12

13

11-12 Chapter 11 User program examples

2.3 Pick and place of stacked parts

 ■ Overview

The following is an example for picking up parts stacked in a maximum of 6 layers and 3 blocks

and placing them on the conveyor.

The number of parts per block may differ from others.

Parts are detected with a sensor installed on the robot hand.

Pick and place of stacked parts

Conveyor
P5 P1

Block 1
P2

Block 2
P3

Block 3

Z=0.0

33C11-R7-00

 ■ Precondition

1. I/O signal

DI (30) Component detection sensor 1: Parts are supplied
DI (31) Robot hand open/close 0: Open / 1: Close

• Robot hand open/close time is 0.1 seconds.

2. The points below should be input beforehand as point data.

P1 Bottom of block 1
P2 Bottom of block 2
P3 Bottom of block 3
P5 Position on conveyor

3. Movement proceeds at maximum speeds but slows down when in proximity to the part.

Processing flow

P5 P1

P5 P1

P4=WHERE

P4=WHERE

High speed

High speed
Slow

Set the current position
into point data (P4)

P4=WHERE

Set the speed at maximum

Load the part onto
conveyor position (P5)

Move to position (P4)
during parts detection

Move to P1

Slow down

33C12-R7-00

4. Use a STOPON condition in the MOVE statement for sensor detection during movement.

7

8

9

10

11

12

13

Application 11-13

SAMPLE

FOR A=1 TO 3

SPEED 100

GOSUB *OPEN

P6=P[A]

LOC3(P6)=0.000

MOVE P,P6,A3=0.000

WHILE -1

 SPEED 20

 MOVE P,P[A],STOPON DI3(0)=1

 IF DI3(0)=0 THEN *L1

 ’SENSOR ON

 P4=JTOXY(WHERE)

 GOSUB *CLOSE

 SPEED 100

 MOVE P,P5,A3=0.000

 GOSUB *OPEN

 MOVE P,P4,A3=0.000

WEND

*L1: ’SENSOR OFF

NEXT A

SPEED 100

DRIVE (3,0)

HALT

*OPEN:

DO3(0)=0

DELAY 100

RETURN

*CLOSE:

DO3(0)=1

DELAY 100

RETURN

7

8

9

10

11

12

13

11-14 Chapter 11 User program examples

2.4 Parts inspection (Multi-tasking example)

 ■ Overview

One robot is used to inspect two different parts and sort them according to the OK/NG results

judged by a testing device.

The robot picks up the part at point A and moves it to the testing device at point B. The testing

device checks the part and sends it to point C if OK or to point D if NG.

The part at point A’ is picked up and moved to the testing device at point B' in the same way. The

testing device checks the part and sends it to point C’ if OK or to point D’ if NG.

It is assumed that 10 to 15 seconds are required for the testing device to issue the OK/NG results.

Parts inspection (Multi-tasking example)

A

P1

B

P2

C

P3

D

P4

A’

P11

B’

P12

C’

P13

D’

P14

Part supply 1 Testing device 1 Part 1 OK Part 1 NG

Part supply 2 Testing device 2 Part 2 OK Part 2 NG

33C13-R7-00

 ■ Precondition

1. I/O signal

I/O signal

Testing device 2 start (0.1 second)
DO3

1: Start *1

7 6 5 4 3 2 1 0

Testing device 1 test completed *3

Testing device 1 OK/NG signal
Part supply 1
Part 1 OK
Part 1 NG

DI2
7 6 5 4 3 2 1 0

DI3
7 6 5 4 3 2 1 0

Testing device 1 start (0.1 second)
Robot chuck open/close

DO2
1: Start *1

0: Open / 1: Close *2

7 6 5 4 3 2 1 0

Testing device 2 test completed *3

Testing device 2 OK/NG signal
Part supply 2
Part 2 OK
Part 2 NG

33C14-R7-00

2. The main task (task 1) is used to test part 1 and the subtask (task 2) is used to test part 2.

3. An exclusive control flag is used to allow other tasks to run while waiting for the test

completion signal from the testing device.

FLAG1 0: Task 1 standby (Task 2 execution enabled)
1: Executing Task 1 (Task 2 execution disabled)

FLAG2 0: Task 2 standby (Task 1 execution enabled)
1: Executing Task 2 (Task 1 execution disabled)

NOTE
 • *1: As the star t s ignal,
s u p p l y a 0 . 1 s e c o n d
pulse signal to the testing
device.

0.1 seconds

ON
OFF

 • *2: Chuck open and close
time is 0.1 seconds.

 • * 3 : E a c h t i m e a t e s t
i s f i n i s h e d , t h e t e s t
completion signal and
OK/NG signal are sent
from the testing device.
After test ing, the test
completion signal turns
ON (=1), and the OK/ NG
signal turns ON (=1) when
the result is OK and turns
OFF (=0) when NG.

7

8

9

10

11

12

13

Application 11-15

4. Flow chart

Processing flow

Task 2 busy?

Exclusive control flag set

Task 2 busy?

START

Exclusive control flag reset

Subtask start

Part 1 supplied?

Chuck open

Move to parts supply position P1

Chuck close

Move to testing device 1

Chuck open

Move upward 10000 pulses

Exclusive control flag reset

Testing device 1 start

Test completed?

Exclusive control flag set

Move to testing device 1

Chuck close

Part OK?

OK parts?

Move to OK parts position

Chuck open

Move upward 10000 pulses

Exclusive control flag reset

NG parts?

FLAG1=0 FLAG2=0

Move to NG parts position

FLAG1=0

FLAG1=1

FLAG1=0

FLAG1=1

N

Y

Y

N

Y

N

Y

N

Y

Y

Y

N

Y

N

N

33C15-R7-00

Task 2 (subtask) runs in the same flow.

7

8

9

10

11

12

13

11-16 Chapter 11 User program examples

Program example

SAMPLE

<Main task>

FLAG1=0

FLAG2=0

UPPOS=0.000

START <SUB_PGM>,T2

*L1:

WAIT DI2(2)=1

WAIT FLAG2=0

FLAG1=1

GOSUB *OPEN

MOVE P,P1,Z=UPPOS

GOSUB *CLOSE

MOVE P,P2,Z=UPPOS

GOSUB *OPEN

DRIVEI (3,-10000)

FLAG1=0

DO2(0)=1

DELAY 100

DO2(0)=0

WAIT DI2(0)=1

WAIT FLAG2=0

FLAG1=1

MOVE P,P2,Z=UPPOS

GOSUB *CLOSE

IF DI2(1)=1 THEN

'GOOD

WAIT DI4(2)=0

MOVE P,P3,Z=UPPOS

ELSE

'NG

WAIT DI2(4)=0

MOVE P,P4,Z=UPPOS

ENDIF

GOSUB *OPEN

DRIVEI (3,-10000)

FLAG1=0

GOTO *L1

<Subtask>

Program name:SUB_PGM

*S1:

WAIT DI3(2)=1

WAIT FLAG1=0

FLAG2=1

GOSUB *OPEN

MOVE P,P11,Z=UPPOS

GOSUB *CLOSE

MOVE P,P12,Z=UPPOS

GOSUB *OPEN

DRIVEI (3,-10000)

FLAG2=0

DO3(0)=1

DELAY 100

DO3(0)=0

WAIT DI3(0)=1

WAIT FLAG1=0

FLAG2=1

MOVE P,P12,Z=UPPOS

GOSUB *CLOSE

IF DI3(1)=1 THEN

'GOOD

WAIT DI3(3)=0

MOVE P,P13,Z=UPPOS

ELSE

'NG

WAIT DI3(4)=0

MOVE P,P14,Z=UPPOS

ENDIF

GOSUB *OPEN

DRIVEI (3,-10000)

FLAG2=0

GOTO *S1

<common routine>

Program name:COMMON

*OPEN:

DO2(1)=0

DELAY 100

RETURN

*CLOSE:

DO2(1)=1

DELAY 100

RETURN

······ Subtask Start

······· Part supply standby

······ Other tasks waiting for standby status

······ Exclusive control flag set

······ Chuck open

······ Move to part supply position

······ Chuck close

······ Move to testing device

······ Chuck open

······ Move axis 3 upward 10,000 pulses

······ Exclusive control flag reset

······ Testing device start

······· Test completion standby

······· Task completion standby

······· Exclusive control flag set

······· Move to testing device

······ Chuck close

······ Test

······· Part movement standby

······· Move to OK parts position

······· Part movement standby

······· Move to NG parts position

······ Chuck open

········Move axis 3 upward 10,000 pulses

········Exclusive control flag reset

7

8

9

10

11

12

13

Application 11-17

2.5 Sealing

 ■ Overview

The following is an example for sealing a part.

Sealing

P0 P1

P2

P3

P4P5

P6 P7

10mm

20mm

33C11-R9-00

 ■ Precondition

1. I/O signal

DO (20) Valve open/close 1: Open / 0: Close

2. Positions of P0 to P7 are set by teaching.

SAMPLE

MOVE P,P0,Z=0

SPEED 40

PATH SET ····················· Start of robot 1's path setting

PATH L,P1,DO(20)=1@10.000 ·········· Start of sealing

at a 10mm position

PATH L,P2

PATH C,P3,P4

PATH L,P5

PATH L,P6,S=30

PATH L,P7,DO(20)=0@20.000 ·········· End of sealing at a

20mm position

PATH END ····················· End of robot 1's

path setting

PATH START Path motion of robot 1 is executed (Robot 1 starts moving from P0

and stops at P7).

HALT

Setting of the

motion path

(Robot does

 not move.)

7

8

9

10

11

12

13

11-18 Chapter 11 User program examples

2.6 Connection to an external device through RS-232C (example 1)

 ■ Overview

Point data can be written in a program by using an external device connected to the YRCX series

controller via the RS-232C port.

 ■ Precondition

1. Input to the external device from the controller

 SDATA/X/Y [cr/lf]

2. Output to the controller from the external device

POINT DATA

P10= 156.420 243.910 0.000 ····· 0.000 0.000 0.000 [cr/lf]

SAMPLE

’INIT

 VCMD$="SDATA/X/Y" ············ Command: Requiring the Movement position.

 P0= 0.000 0.000 ··· 0.000 0.000 0.000 0.000

 ····················· An initial position

’MAIN ROUTINE

 MOVE P, P0 ··················· Moves to the initial position.

*ST:

 SEND VCMD$ TO CMU ············ Sends the command.

 SEND CMU TO P10 ·············· Receives the destination point to move

to.

 MOVE P, P10 ·················· Moves to the reception position.

GOTO *ST

• "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.

• "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

NOTE
 • [cr/lf] indicates CR code
(=0Dh) + LF code (=0Ah).

MEMO

7

8

9

10

11

12

13

Application 11-19

2.7 Connection to an external device through RS-232C (example 2)

 ■ Overview

Point data can be created from the desired character strings and written in a program by using an

external device connected to the YRCX controller via the RS-232C port.

 ■ Precondition

1. Input to the external device from the controller

 SDATA/X/Y [cr/lf]

2. Output to the controller from the external device

 X=156.420, Y=243.910 [cr/lf]

• "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.

• "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

• The LEN () function obtains the length of the character string.

• The MID$ () function obtains the specified character string from among the character strings.

• The VAL () function obtains the value from the character string.

SAMPLE

'INIT

 VCMD$="SDATA/X/Y" ············ Command: Requiring the Movement

position.

 P0= 0.000 0.000 ··· 0.000 0.000 0.000 0.000

 ····················· An initial position

 P11= 100.000 100.000 0.000 0.000 0.000 0.000

 ····················· A reception position

'MAIN ROUTINE

 MOVE P,P0 ···················· Moves to the initial position.

*ST:SEND VCMD$ TO CMU ··········· Sends the command.

 SEND CMU TO VIN$ ············· R e c e i v e s t h e R e s p o n s e :

"X=156.420,Y=243.910".

 FOR I%=1 TO LEN(VIN$)-2

 IF MID$(VIN$,I%,2)="X=" THEN EXIT FOR

 ····················· If "X=", then exits from the roop.

 NEXT I%

 LOC1(P11)=VAL(MID$(VIN$,I%+2))

 ····················· Converts "X=" downward to numeric value

and assigns to axis 1 of P11.

 FOR I%=1 TO LEN(VIN$)-2

 IF MID$(VIN$,I%,2)="Y=" THEN EXIT FOR

 ····················· If "Y=", then exits from the roop.

 NEXT I%

 LOC2(P11)=VAL(MID$(VIN$,I%+2))

 ····················· Converts "Y=" downward to numeric value

and assigns to axis 2 of P11.

 MOVE P,P11 ··················· Moves to the reception position.

 GOTO *ST

NOTE
 • [cr/lf] indicates CR code
(=0Dh) + LF code (=0Ah).

MEMO

7

8

9

10

11

12

13

11-20 Chapter 11 User program examples

SAMPLE

’INT

 VCMD$="SDATA/X/Y"

 VIN$=""

 VX$=""

 VY$=""

 P0= 0.000 0.000 0.000 0.000 0.000 0.000

 P11= 100.000 100.000 0.000 0.000 0.000 0.000

’MAIN ROUTINE

 MOVE P, P0

*ST:

 SEND VCMD$ TO CMU

 SEND CMU TO VIN$

 I=1

 VMAX=LEN(VIN$)

*LOOP:

 IF I>VMAX THEN GOTO *E_LOOP

 C$=MID$(VIN$,I ,1)

 IF C$="X" THEN

 I=I+2

 J=I

*X_LOOP:

 C$=MID$(VIN$, J, 1)

 IF C$="," THEN

*X1_LP:

 L=J-I

 VX$=MID$(VIN$, I, L)

 I=J+1

 GOTO *LOOP

 ENDIF

 J=J+1

 IF J>VMAX THEN GOTO *X1_LP

 GOTO *X_LOOP

 ENDIF

 IF C$="Y" THEN

 I=I+2

 J=I

*Y_LOOP:

 C$=MID$(VIN$, J, 1)

 IF C$=","THEN

*Y1_LP:

 L=J-I

 VY$=MID$(VIN$, I, L)

 I=J+1

 GOTO *LOOP

 ENDIF

 J=J+1

 IF J>VMAX THEN GOTO *Y1_LP

 GOTO *Y_LOOP

 END IF

 I=I+1

 GOTO *LOOP

*E_LOOP:

 WX=VAL(VX$)

 WY=VAL(VY$)

 LOC1(P11)=WX

 LOC2(P11)=WY

 MOVE P, P11

GOTO *ST

HALT

Chapter 12

Online commands

1 1 Online Command List12-1
2 2 Operation and setting commands12-9
3 3 Reference commands 12-23
4 4 Operation commands 12-37
5 5 Data file operation commands 12-41
6 6 Utility commands 12-52
7 7 Individual execution of robot language ... 12-54
8 8 Control codes 12-55

7

8

9

10

11

12

13

Online Command List 12-1

 1 Online Command List

Online commands can be used to operate the controller via an RS-232C interface or via an Ethernet.

This Chapter explains the online commands which can be used. For details regarding the RS-232C

and Ethernet connection methods, refer to the "YRCX Controller User's Manual".

About termination codes

During data transmission, the controller adds the following codes to the end of a line of transmission data.

 • RS-232C

 • CR (0Dh) and LF (0Ah) are added to the end of the line when the "Termination code" parameter

 of communication parameters is set to "CRLF".

 • CR (0Dh) is added to the end of the line when the "Termination code" parameter of

 communication parameters is set to "CR".

 • Ethernet

 • CR (0Dh) and LF (0Ah) are added to the end of the line.

When data is received, then the data up to CR (0Dh) is treated as one line regardless of the

"Termination code" parameter setting, so LF (0Ah) is ignored.

The termination code is expressed as [cr/lf] in the detailed description of each online command

stated in "2 Operation and setting commands" onwards in this Chapter.

7

8

9

10

11

12

13

12-2 Chapter 12 Online commands

1.1 Online command list: Operation-specific

Key operation

Operation type Command Option Condition

Register program in the task LOAD
 <program name> ,Tn , p
 PGm
 (m: 1-100, n: 1-16, p: 1-64)

2

Program Reset program
 Execute program
 Stop program

RESET
RUN
STOP

 Tn
 <program name>
 PGm
 (m: 1-100, n: 1-16)

2

Program Execute one line
 Skip one line
 Execute to next line

STEP
SKIP
NEXT

 Tn
 <program name>
 PGm

 (m: 1-100, n: 1-16)

2

Program Execute before specified line
 Skip before specified line

RUNTO
SKIPTO

 Tn ,k
 <program name>
 PGm

 (m: 1-100, n: 1-16, k: 1-9999)

2

Set break point BREAK

 <program name> (n, n, n,...), k
 PGm 0
 0

 (m: 1-100, n: 1-9999, k: 0/1)

2

Change manual movement speed MSPEED [robot number] k
 (robot number: 1-4, k: 1-100) 2

Move to absolute reset position ABSADJ [robot number] k, f
 (robot number: 1-4, k: 1-6, f: 0/1) 3

Absolute reset MRKSET [robot number] k
 (robot number: 1-4, k: 1-6) 3

Return-to-origin ORGRTN [robot number] k
 (robot number: 1-4, k: 1-6) 3

Change inching movement amount IDIST [robot number] k
 (robot number: 1-4, k: 1-10000) 2

Manual movement (inching)
INCH
INCHXY
INCHT

 [robot number] km
 (robot number: 1-4, k: 1-6, m: +/-) 3

Manual movement (jog)
JOG
JOGXY
JOGT

 [robot number] km
 (robot number: 1-4, k: 1-6, m: +/-) 3

Point data teaching TEACH
TCHXY

 [robot number] m
 (robot number: 1-4, m: 0-29999) 2

Conditions: 1. Always executable.

 2. Not executable during inputs from the programming box.

 3. Not executable during inputs from the programming box, and while the program is

running.

 4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

7

8

9

10

11

12

13

Online Command List 12-3

Utility

Operation type Command Option Condition

Copy program

COPY

<program name1 > TO <program name2 >
PGm
(m: 1-100)

2Copy points "m - n" to point "k" Pm-Pn TO Pk
(m: 0-29999, n: 0-29999, k: 0-29999)

Copy point comments "m - n" to point comment "k" PCm-PCn TO PCk
(m: 0-29999, n: 0-29999, k: 0-29999)

Delete program

ERA

<program name >
PGm
(m: 1-100)

2
Delete points "m - n" Pm-Pn

(m: 0-29999, n: 0-29999)

Delete point comments "m - n" PCm-PCn
(m: 0-29999, n: 0-29999)

Delete point names "m - n" PNm-PNn
(m: 0-29999, n: 0-29999)

Delete pallet "m" PLm
(m: 0-39)

Rename "program 1" to "program 2" REN <program 1> TO <program 2> 2

Check program syntax SYNCHK
 <program name> , k
 PGm
(m: 1-100, k: 1-100)

2

Compile sequence program SEQCMPL 2

Change program attribute ATTR
 <program name> TO s
 PGm
(m: 1-100, s: RW/RO/H)

2

Setting main program MAINPG m
(m: 1-100) 2

Initialize data Program
 Point
 Point comment
 Point name
 Shift
 Hand
 Pallet
 General Ethernet Port
 Input/output name
 Area check output
 All data except parameters
 Parameter
 All data (MEM+PRM)

INIT

PGM
PNT
PCM
PNM
SFT
HND
PLT
GEP
ION
ACO
MEM
PRM
ALL

3

Initialize data Communication parameter INIT CMU
ETH 3

Initialize data Alarm history INIT LOG 3

Setting Input data INPUT
 SET d
 CAN
 CLR
(d: input data)

2

Buffer clear Output message MSGCLR 2

Change access level ACCESS
k , pppppppp
(k: 0/1, p: alphanumeric characters
of 8 characters or less)

2

Setting password SETPW 2

Setting Sequence execution flag SEQUENCE k
(k: 0/1/3) 2

Reset alarm ALMRST 2

Check or set date DATE yy/mm/dd
(yy: 00-99, mm: 01-12, dd: 00-31) 2

Check or set time TIME hh: mm: ss
(hh: 00-23, mm: 00-59. ss: 00-59) 2

Conditions: 1. Always executable.

 2. Not executable during inputs from the programming box.

 3. Not executable during inputs from the programming box, and while the program is

running.

 4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

7

8

9

10

11

12

13

12-4 Chapter 12 Online commands

Data handling

Operation type Command Option Condition

Acquiring status Access level ?
ACCESS k , pppppppp
(k: 0/1, p: alphanumeric characters
of 8 characters or less)

1

Alarm status ALM

Break point status
BREAK <program name>
 PGm
(m: 1-100)

Last (Current) point number reference CURPNT
Emergency stop status EMG

Selected hand status HAND [robot number]
(robot number: 1-4)

Inching movement amount status IDIST [robot number]
(robot number: 1-4)

Input data INPUT

Online/offline status LINEMODE ETH
 CMU

Main program number MAINPG
Remaining memory capacity MEM
Mode status MODE
Motor power status MOTOR
Output message MSG

Manual movement speed MSPEED [robot number]
(robot number: 1-4)

Return-to-origin status ORIGIN [robot number]
(robot number: 1-4)

Sequence program execution
status SEQUENCE

Servo status SERVO [robot number]
(robot number: 1-4)

Selected shift status SHIFT [robot number]
(robot number: 1-4)

Acquire task in RUN or
SUSPEND status TASKS

Task end condition TSKECD Tk
(k: 1-16)

Task operation status TSKMON Tk
(k: 1-16)

Version information VER
Numerical data numerical expression
Character string data character string expression
Point data point expression
Shift data shift expression

Read-out data READ read-out file 2
Write data WRITE write file 2

Conditions: 1. Always executable.

 2. Not executable during inputs from the programming box.

 3. Not executable during inputs from the programming box, and while the program is

running.

 4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

7

8

9

10

11

12

13

Online Command List 12-5

Robot language independent execution

The Robot languages executable independently are the commands/functions with "3" at "Online"

column in Chapter 8 "robot language table".

Control code

Operation type Command Option Condition
Execution language interruption ^C(=03H) 1

Conditions: 1. Always executable.

 2. Not executable during inputs from the programming box.

 3. Not executable during inputs from the programming box, and while the program is

running.

 4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

7

8

9

10

11

12

13

12-6 Chapter 12 Online commands

1.2 Online command list: In alphabetic order

Command Option Meaning Condition

?
ACCESS k , pppppppp
(k: 0/1,
p: alphanumeric characters
of 8 characters or less)

Acquire access level 1

ALM Acquire alarm status
BREAK <program name>
 PGm
(m: 1-100)

Acquire break point status

CURPNT Acquire Last (Current) point number reference
EMG Acquire emergency stop status
HAND [robot number]
(robot number: 1-4) Acquire selected hand status

IDIST [robot number]
(robot number: 1-4) Acquire inching movement amount status

INPUT Acquire input data status
LINEMODE ETH
 CMU Acquire online/offline status

MAINPG Acquire main program number
MEM Acquire remaining memory capacity
MODE Acquire mode status
MOTOR Acquire motor power status
MSG Acquire output message
MSPEED [robot number]
(robot number: 1-4) Acquire manual movement speed

ORIGIN [robot number]
(robot number: 1-4) Acquire return-to-origin status

SEQUENCE Acquire sequence program execution status
SERVO [robot number]
(robot number: 1-4) Acquire servo status

SHIFT [robot number]
(robot number: 1-4) Acquire selected shift status

TASKS Acquire task in RUN or SUSPEND status
TSKECD Tk
(k: 1-16) Acquire task end condition

TSKMON Tk
(k: 1-16) Acquire task operation status

VER Acquire version
numerical expression Acquire numerical data
character string expression Acquire character string data
point expression Acquire point data
shift expression Acquire shift data

^C (=03H) Execution language interruption 1

ABSADJ [robot number] k, f
(robot number: 1-4, k: 1-6, f: 0/1) Move to absolute reset position 3

ACCESS
k , pppppppp
(k: 0/1,
p: alphanumeric characters
of 8 characters or less)

Change access level 2

ARMRST Reset alarm

ATTR
 <program name> TO s
 PGm
(m: 1-100, s: RW/RO/H)

Change program attribute 2

BREAK

 <program name> (n, n, n,...), k
 PGm 0
 0
(m: 1-100, n: 1-9999, k: 0/1)

Set break point 2

7

8

9

10

11

12

13

Online Command List 12-7

Command Option Meaning Condition

COPY
<program name1 > TO <program name2 >
PGm
(m: 1-100)

Copy program

2Pm-Pn TO Pk
(m: 0-29999, n: 0-29999, k: 0-29999) Copy points "m - n" to point "k"
PCm-PCn TO PCk
(m: 0-29999, n: 0-29999, k: 0-29999)

Copy point comments "m - n" to point
comment "k"

DATE yy/mm/dd
(yy: 00-99, mm: 01-12, dd: 00-31) Check or set the date 2

ERA
<program name >
PGm
(m: 1-100)

Delete program

2

Pm-Pn
(m: 0-29999, n: 0-29999) Delete points "m - n"
PCm-PCn
(m: 0-29999, n: 0-29999) Delete point comments "m - n"
PNm-PNn
(m: 0-29999, n: 0-29999) Delete point names "m - n"
PLm
(m: 0-39) Delete pallet "m"

IDIST
[robot number] k
(robot number: 1-4, k:
1-10000)

Change inching movement amount 3

INCH
INCHXY
INCHT

[robot number] km
(robot number: 1-4, k: 1-6, m:
+/-)

Manual movement (inching) 3

INIT ACO Initialize area check output)

3

ALL Initialize all data (MEM+PRM)

CMU Initialize communication parameter
(RS-232C)

ETH Initialize communication parameter
(Ethernet)

GEP Initialize General Ethernet Port
HND Initialize hand data
ION Initialize input/output name
LOG Initialize alarm history
MEM Initialize all data except parameters
PCM Initialize point comment data
PGM Initialize program data
PLT Initialize pallet data
PNM Initialize point name
PNT Initialize point data
PRM Initialize parameter data
SFT Initialize shift data

INPUT
 SET d
 CAN
 CLR
(d: input data)

Sets the input data to the data request
by the INPUT statement 2

JOG
JOGXY
JOGT

[robot number] km
(m: 1-4, k: 1-6, m: +/-) Manual movement (jog) 3

LOAD
 <program name> ,Tn , p
 PGm

(m: 1-100, n: 1-16, p: 1-64)
Register program in the task 2

MAINPG m
(m: 1-100) Setting main program 2

MRKSET [robot number] k
(robot number: 1-4, k: 1-6) Absolute reset 3

MSGCLR Buffer clear Output message 1

MSPEED [robot number] k
(robot number: 1-4, k: 1-100) Change manual movement speed 2

7

8

9

10

11

12

13

12-8 Chapter 12 Online commands

Command Option Meaning Condition

NEXT

 Tn
 <program name>
 PGm

 (m: 1-100, n: 1-16)

Execute program to next line 4

ORGRTN [robot number] k
(robot number: 1-4, k: 1-6) Return-to-origin 3

READ read-out file Read-out data 2
REN <program 1> TO <program 2> Change program name from "1" to "2" 2

RESET

 Tn
 <program name>
 PGm
 (m: 1-100, n: 1-16)

Reset program 2

RUN

 Tn
 <program name>
 PGm
 (m: 1-100, n: 1-16)

Execute program 4

RUNTO

 Tn ,k
 <program name>
 PGm

 (m: 1-100, n: 1-16, k: 1-9999)

Execute program before specified line 2

SEQCMPL Compile sequence program

SEQUENCE k
(k: 0/1/3) Set sequence execution flag 2

SETPW Setting password

SKIP

 Tn
 <program name>
 PGm

 (m: 1-100, n: 1-16)

Program: Skip one line 4

SKIPTO

 Tn ,k
 <program name>
 PGm

 (m: 1-100, n: 1-16, k: 1-9999)

Program: Skip before specified line 2

STEP

 Tn
 <program name>
 PGm

 (m: 1-100, n: 1-16)

Program: Execute one line 4

STOP

 Tn
 <program name>
 PGm
 (m: 1-100, n: 1-16)

Stop program 2

SYNCHK
 <program name> , k
 PGm

 (m: 1-100, k: 1-100)
Check program syntax 2

TEACH
TCHXY

 [robot number] m
 (robot number: 1-4, m:

0-29999)
Point data teaching 3

TIME hh: mm: ss
(hh: 00-23, mm: 00-59. ss: 00-59) Check or set time 2

WRITE write file Write data 2
 - Robot language executable independently 4

Conditions: 1. Always executable.

 2. Not executable during inputs from the programming box.

 3. Not executable during inputs from the programming box, and while the program is

running.

 4. Not executable during inputs from the programming box, while the program is

running, and when specific restrictions apply.

7

8

9

10

11

12

13

Online Command List 12-9

 2 Operation and setting commands

2.1 Program operations

1. Register task

Command format

@LOAD <program name> ,Tn, p [cr/lf]

 PGm

Response format

OK[cr/lf]

 Values m ...Program number: 1 to 100

 n ..Task number: 1 to 16

 P ..Task priority ranking: 1 to 64

 Meaning Registers the specified program into "task n" with "priority p". The registered program

enters the STOP status. When "task number n" is omitted, the task with the smallest

number of those that have not been started is specified automatically. When "task

priority p" is omitted, "32" is specified.

 The smaller value, the higher priority. The larger value, the lower priority (high 1 to low 64).

 When the task with a high task priority is in the RUNNING status, the task with a low

task priority still remains in the READY status.

SAMPLE

Command: @LOAD <PG_MAIN>, T1 [cr/lf] ····· Registers the program to task 1.

Response: OK [cr/lf]

2. Reset program

Command format

1.@RESET [cr/lf]

2.@RESET Tn [cr/lf]

 <program name>

 PGm

Response format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

7

8

9

10

11

12

13

12-10 Chapter 12 Online commands

 Meaning Executes the program reset.

 Command format 1 resets all programs. When restarting the program, the main program

or the program that has been executed last in task 1 is executed from its beginning.

 Command format 2 resets only the specified program. When restarting the program that

has been reset, this program is executed from its beginning.

SAMPLE

Command: @RESET [cr/lf] ············ Resets all programs.

Response: OK [cr/lf]

Command: @RESET T3（[cr/lf]（ ········ Resets only the program that is

executed by T3.

Response: OK [cr/lf]

3. Program execution

Command format

1.@RUN [cr/lf]

2.@RUN Tn [cr/lf]

 <program name>

 PGm

Response format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 Meaning Executes or stops the current program.

 Command format 1 executes all programs in the STOP status.

 Command format 2 executes only the specified program in the STOP status.

SAMPLE

Command: @RUN [cr/lf] ·············· Executes all programs in the STOP

status.

Response: OK [cr/lf]

Command: @RUN T3 [cr/lf] ··········· Executes only the program in the

STOP status that is registered in

T3.

Response: OK [cr/lf]

7

8

9

10

11

12

13

Online Command List 12-11

4. Stop program

Command format

1.@STOP [cr/lf]

2.@STOP Tn [cr/lf]

 <program name>

 PGm

Response format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 Meaning Stops the program.

 Command format 1 stops all programs.

 Command format 2 stops only the specified program.

SAMPLE

Command: @STOP [cr/lf] ············· Stops all programs.

Response: OK [cr/lf]

Command: @STOP T3 [cr/lf] ·········· Stops only the program that is

executed by T3.

Response: OK [cr/lf]

5. Execute one program line

Command format

@STEP Tn [cr/lf]

 <program name>

 PGm

Command format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 Meaning Executes one line of the specified program. When executing one line of the GOSUB

statement or CALL statement, the program operation enters the subroutine or sub-

procedure.

SAMPLE

Command: @STEP T3 [cr/lf] ·········· Executes one line of the program

that is executed by T3.

Response: OK [cr/lf]

7

8

9

10

11

12

13

12-12 Chapter 12 Online commands

6. Skip one program line

Command format

@SKIP Tn [cr/lf]

 <program name>

 PGm

Response format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 Meaning Skips one line of the specified program. When skipping one line of the GOSUB

statement or CALL statement, all subroutines or sub-procedures are skipped.

SAMPLE

Command: @SKIP T3 [cr/lf] ········ Skips one line of the program

that is executed by T3.

Response: OK [cr/lf]

7. Execute program to the next line

Command format

@NEXT Tn [cr/lf]

 <program name>

 PGm

Response format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 Meaning Executes the specified program to the next line. Executing @NEXT on the line in the

GOSUB or in the CALL statement make the program execute and return through the

sub-procedure processing, then stop at the next line.

• This is a same processing as setting the breakpoint on the next line in the program currently

suspended and executing the program (@RUN).

 @STEP stops the program at the beginning line of the sub-procedure called by GOSUB or CALL

statement.

SAMPLE

Command: @NEXT T3 [cr/lf] ·········· Executes the program in execution

at T3 until the next line.

Response: OK [cr/lf]

MEMO

7

8

9

10

11

12

13

Online Command List 12-13

8. Execute program to line before specified line

Command format

@RUNTO Tn , k [cr/lf]

 <program name>

 PGm

Command format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 k ..Specified line number: 1 to 9999

 Meaning Executes the specified program to the line before the specified line.

SAMPLE

Command: @RUNTO T3, 15 [cr/lf] ····· Executes the program that is

executed by T3 to the 14th line

and stops at the 15th line.

Response: OK [cr/lf]

9. Skip program to line before specified line

Command format

@SKIPTO Tn , k [cr/lf]

 <program name>

 PGm

Command format

OK[cr/lf]

 Values n ..Task number: 1 to 16

 m ...Program number: 1 to 100

 k ..Specified line number: 1 to 9999

 Meaning Skips the specified program to the line before the specified line.

SAMPLE

Command: @SKIPTO T3, 15 [cr/lf] ···· Skips the program that is executed

by T3 to the 14th line and stops

at the 15th line.

Response: OK [cr/lf]

7

8

9

10

11

12

13

12-14 Chapter 12 Online commands

10. Set break point

Command format

1.@BREAK <program name> (n,n,n,...), k [cr/lf]

 PGm

2.@BREAK <program name> 0 [cr/lf]

 PGm

3.@BREAK 0 [cr/lf]

Command format

OK[cr/lf]

 Values m ...Program number: 1 to 100

 n ..Specified line number: 1 to 9999

 k ..Set/Cancel: 0: Set, 1: Cancel

 Meaning Sets a break point to pause the program during program execution.

 Command format 1 sets or cancels a break point in the specified line of the specified

program. Multiple lines can also be specified.

 Command format 2 cancels all break points set in the specified program.

 Command format 3 cancels all break points.

SAMPLE

Command: @BREAK PG3 (1, 3), 1 [cr/lf] ···· Sets a break point in the first

and third lines of PG3.

Response: OK [cr/lf]

7

8

9

10

11

12

13

Online Command List 12-15

11. Check program syntax

Command format

@SYNCHK <program name> ,k [cr/lf]

 PGm

Command format

RUN [cr/lf]

nnnn:gg.bbb [cr/lf]

nnnn:gg.bbb [cr/lf]

:

nnnn:gg.bbb [cr/lf]

nnnn:gg.bbb [cr/lf]

END [cr/lf]

 Values m ...Program number: 1 to 100

 k ..Maximum number of error: 1 to 100

 nnnnLine number where error occurred: 1 to 9999

 gg ...Alarm group number

 bbb ..Alarm classification number

 Meaning Checks syntax of the program specified by <program name> or program number.

 If there are syntax errors in the specified program, line number where error occurred,

alarm group number and alarm classification number are output. For details regarding

alarm group number and alarm classification number, refer to the "YRCX Controller

User's Manual" or "YRCX Controller Operator’s Manual".

SAMPLE

Command: @SYNCHK PG1, 100 [cr/lf] ······· Sets a Maximum number of error

at 100 and checks syntax of the

program 1.

Response: RUN [cr/lf]

 1:5.239 [cr/lf] ··········· Detects syntax errors "5.239:

Illegal identifier" at 1th, 2nd,

3rd and 8th lines.

 2:5.239 [cr/lf]

 3:5.239 [cr/lf]

 8:5.239 [cr/lf]

 6:5.222 [cr/lf] ··········· Detects syntax error "5.222（IF

without ENDIF" at 6th line.

END [cr/lf]

7

8

9

10

11

12

13

12-16 Chapter 12 Online commands

12. Set main program

Command format

@MAINPG[cr/lf]

Response format

OK[cr/lf]

 Values m: Program number1 to 100

 Meaning Specifies the program which is always selected when all programs are reset. When "0"

is specified at the main program number or program specified at the main program

number doesn't exist, the program that has been executed last (current program) in the

task 1 is selected after resetting all programs.

SAMPLE

Command: @MAINPG 1[cr/lf] ·········· Sets program number 1 at the main

program.

Response: OK[cr/lf]

13. Compile sequence program

Command format

@SEQCMPL[cr/lf]

Response format

RUN[cr/lf]

END[cr/lf]

 Meaning Compiles the sequence program.

 When the program named "SEQUENCE" doesn't exist or syntax errors exist in the

program, an error message appears.

 The execution program is created after successful termination of compiling and the

letter "s" appears in Flag.

 For details, refer to Chapter 7 "Sequence function".

SAMPLE

Command: @SEQCMPL[cr/lf] ··········· Compiles the sequence program.

Response: RUN[cr/lf]

 END[cr/lf]

NOTE
 • " M a i n p r o g r a m "
corresponds conventional
function "_SELECT" of YRC,
etc.

7

8

9

10

11

12

13

Online Command List 12-17

2.2 MANUAL mode operation

1. Change the MANUAL mode speed

Command format

@MSPEED [robot number] k[cr/lf]

Response format

OK[cr/lf]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 k ..Manual movement speed: 1 to 100

 Meaning Changes the manual mode movement speed of the robot specified by the <robot

number>.

SAMPLE

Command: @MSPEED 50[cr/lf]

Response: OK[cr/lf]

2. Point data teaching

Command format

@TEACH [robot number] mmmmm[cr/lf]

@TCHXY [robot number] mmmmm[cr/lf]

Response format

OK[cr/lf]

 Values robot number1 to 4 (If not input, robot 1 is specified.)

 mmmmmPoint number for registering point data: 0 to 29999

 Meaning Registers the current robot position as point data for the specified point number. If point

data is already registered in the specified point number, then that point data will be

overwritten.

 The unit of the point data may vary depending on the command.

 TEACH "pulse" units

 TCHXY "mm" units

SAMPLE

Command: @TEACH[2] 100[cr/lf]

Response: OK[cr/lf]

7

8

9

10

11

12

13

12-18 Chapter 12 Online commands

3. Change inching movement amount

Command format

@IDIST [robot number] mmmmm [cr/lf]

Response format

OK[cr/lf]

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 mmmmm: inching movement amount1 to 10000

 Meaning Changes the inching movement amount of the robot specified by the <robot number>.

 The unit of the movement amount may vary depending on the command.

 INCH "pulse" units: 1 to 10000 pulse

 INCHXY "mm" units: 0.001 to 10.000mm

 INCHXT "mm" units: 0.001 to 10.000mm

SAMPLE

Command: @IDIST[2] 100[cr/lf]

Response: OK[cr/lf]

2.3 Alarm reset

Command format

@ALMRST [cr/lf]

Response format

RUN[cr/lf]

END[cr/lf]

 Meaning Resets the alarm.

 However, this command cannot be used for the alarms which require the restart of

system. In this case, turn off the controller and turn it on again.

SAMPLE

Command: @ALMRST [cr/lf]

Response: RUN[cr/lf]

 END[cr/lf]

7

8

9

10

11

12

13

Online Command List 12-19

2.4 Clearing output message buffer

Command format

@MSGCLR [cr/lf]

Response format

OK[cr/lf]

 Values Clears the output message buffer of the controller. After the messages have been output

by the PRINT statement, etc., the messages remaining in the buffer are cleared.

SAMPLE

Command: @MSGCLR [cr/lf]

Response: OK[cr/lf]

7

8

9

10

11

12

13

12-20 Chapter 12 Online commands

2.5 Setting input data

Command format

@INPUT SET d [cr/lf]

 CAN

 CLR

Response format

OK[cr/lf]

 Values d: Input data Value that is matched to the type of the variable specified

by the INPUT statement.

(Character string is enclosed by " ")

 Meaning Sets the input data for responding to a data request by INPUT statement of robot

program.

 The controller parameter "INPUT/PRINT using channel" should be set a current

communication channel (CMU, ETH or iVY).

 SETSets the data which is input to the variable when INPUT statement is executed.

 CANCancels the data request by INPUT statement.

 CLRClears the data specified @INPUT SET downward.

SAMPLE

<Online command> <Robot program>

@INPUT SET 10[cr/lf]

@INPUT SET 5[cr/lf]

OK[cr/lf] INPUT A%[cr/lf]

@?MSG[cr/lf] PRINT A%[cr/lf]

10[cr/lf]

OK[cr/lf]

<Online command> <Robot program>

@INPUT SET 10[cr/lf]

OK[cr/lf]

@INPUT CLR[cr/lf]

OK[cr/lf]

@INPUT SET 5[cr/lf]

OK[cr/lf] INPUT A%[cr/lf]

@?MSG[cr/lf] PRINT A%[cr/lf]

5[cr/lf]

OK[cr/lf]

7

8

9

10

11

12

13

Online Command List 12-21

2.6 Change access level

Command format

@ACCESS k , pppppppp [cr/lf]

Response format

OK[cr/lf]

 Values k: Access level 0: Maintainer level, 1: Operator level

 pppppppp: Password Alphanumeric characters of 8 characters or less

 Meaning Changes access level. If password is omitted, sets without password.

 When changes access level to the maintainer level and entered password is incorrect,

"6.235: Password error" will occur.

SAMPLE

Command: @ACCESS 0,password [cr/lf] ········ Sets "password" as password, and

changes the level to "maintainer

level".

Response: OK [cr/lf]

REFERENCE
 • For deta i l s regard ing
access level, refer to the
YRCX user's manual or
operator's manual.

7

8

9

10

11

12

13

12-22 Chapter 12 Online commands

2.7 Setting input data

Command format

@SETPW [cr/lf]

Response format

READY[cr/lf]

pppppppp[cr/lf]

kkkkkkkk[cr/lf]

nnnnnnnn[cr/lf]

[cr/lf] ·······················line-feed

OK[cr/lf]

 Values pppppppp: old password (current password) Alphanumeric characters of 8 characters or less

 kkkkkkkk: new password Alphanumeric characters of 8 characters or less

 nnnnnnnn: new password (confirmation) Alphanumeric characters of 8 characters or less

 Meaning Changes the password for the access level changing to the maintainer level.

 The current password is input for the old password, and the revised password is input

for the new password and for the new password of confirmation. In the next line of the

new password (confirmation), inserts line feeds only.

 When input password as the old password is different from the current password or new

password and new password (confirmation) are not same, "6.235: Password error" will

occur.

SAMPLE

Command: @SETPW[cr/lf（

Response: READY [cr/lf]

 oldpass [cr/lf] ··········· Inputs "oldpass" as old password.

 newpass [cr/lf] ··········· Inputs "newpass" as new password.

 newpass [cr/lf] ··········· Inputs "newpass" as new password

(confirmation).

 [cr/lf] ··················· line-feed

 OK [cr/lf]

REFERENCE
 • For deta i l s regard ing
access level, refer to the
YRCX user's manual or
operator's manual.

7

8

9

10

11

12

13

Reference commands 12-23

 3 Reference commands

3.1 Acquiring return-to-origin status

Command format 1

@?ORIGIN[cr/lf]

Response format 1

x [cr/lf]

OK [cr/lf]

Command format 2

@?ORIGIN robot number [cr/lf]

Response format 2

x y{,y{,{...}}} [cr/lf]

OK [cr/lf]

 Values Robot number ..

x: Robot return-to-origin status

y: Axis return-to-origin status

1 to 4 (If not input, robot 1 is specified.)

0: Incomplete, 1: Complete

Shows the status of the axis 1, axis 2, …,

axis 6 from the left.

0: Incomplete, 1: Complete

(Omitted when the axis is not connected.)

 Meaning Acquires return-to-origin status.

 Command format 1 acquires the return-to-origin status of all robots while command

format 2 acquires the status of the specified robot.

SAMPLE

Command: @?ORIGIN 2 [cr/lf]

Response: 0 1,1,0,1 ················· Axis 3 of the robot 2 is in the

return-to-origin incomplete

status.

 OK [cr/lf]

7

8

9

10

11

12

13

12-24 Chapter 12 Online commands

3.2 Acquiring the servo status

Command format

@?SERVO [robot number] [cr/lf]

Response format

x y{,y{,{...}}} [cr/lf]

OK [cr/lf]

 Values Robot number

x: Robot servo status

y: Axis servo status

1 to 4 (If not input, robot 1 is specified.)

0: Servo off status

1: Servo on status

Shows the status of the axis 1, axis 2, …, axis 6 from the left.

0: Mechanical brake on + dynamic brake on status

1: Servo on status

2: Mechanical brake off + dynamic brake off status

(Omitted when the axis is not connected.)

 Meaning Acquires the servo status.

SAMPLE

Command: @?SERVO[3] [cr/lf]

Response: 0 0,1,0,0 ················· Only the axis 2 of the robot 3 is

in the servo on status.

 OK [cr/lf]

3.3 Acquire motor power status

Command format

@?MOTOR [cr/lf]

Response format

x [cr/lf]

OK [cr/lf]

 Values x: Motor power status0: Motor power off status

1: Motor power on status

2: Motor power on + all robot servo on status

 Meaning Acquires the motor power status.

SAMPLE

Command: @?MOTOR [cr/lf]

Response: 2

 OK [cr/lf]

7

8

9

10

11

12

13

Reference commands 12-25

3.4 Acquiring the access level

Command format

@?ACCESS[cr/lf]

Response format

k[cr/lf]

OK[cr/lf]

 Values k: Access level0 to 1

 Meaning Acquires the access level.

SAMPLE

Command: @?ACCESS[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

3.5 Acquiring the break point status

Command format

@?BREAK <program name> [cr/lf]

 PGm

Response format

n{,n{,{...}}} [cr/lf]

OK [cr/lf]

 Values n: Line number on which break point "n" is set 1 to 9999

 Program name .. Program name intended to delete

 m: Program number 1 to 100

 Meaning Acquires the break point status.

SAMPLE

Command: @?BREAK <TEST>[cr/lf]

Response: 12,35[cr/lf]

 OK[cr/lf]

REFERENCE
 • For deta i l s regard ing
access level, refer to the
YRCX user's manual or
operator's manual.

7

8

9

10

11

12

13

12-26 Chapter 12 Online commands

3.6 Acquiring the mode status

Command format

@?MODE[cr/lf]

Response format

k[cr/lf]

OK[cr/lf]

 Values k: Mode status 0: MANUAL mode

 1: AUTO mode (Control source: Programming box)

 2: AUTO mode (Control source release)

-1: Restricted mode

 Meaning Acquires the controller mode status.

SAMPLE

Command: @?MODE[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

3.7 Acquiring the communication port status

Command format

@?LINEMODE ETH [cr/lf]

 CMU

Response format

k[cr/lf]

OK[cr/lf]

 Values k .. 0: OFFLINE, 1: ONLINE

 Meaning Acquires the specified communication port status.

 ONLINE / OFFLINE commands allow to change a specified communication port to the

"online" / "offline" mode, respectively.

SAMPLE

Command: @?LINEMODE ETH [cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

Reference commands 12-27

3.8 Acquiring the main program number

Command format

@?MAINPG[cr/lf]

Response format

m[cr/lf]

OK[cr/lf]

 Values m: Program number 0 to 100

(If not registered in the main program, acquires 0.)

 Meaning Acquires the program number which is registered in the main program.

SAMPLE

Command: @?MAINPG[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

3.9 Acquiring the sequence program execution status

Command format

@?SEQUENCE[cr/lf]

Response format

1. 1,s[cr/lf]

 OK[cr/lf]

2. 3,s[cr/lf]

 OK[cr/lf]

3. 0[cr/lf]

 OK[cr/lf]

 Values s The sequence program's execution status is indicated as 1 or 0.

(1: Program execution is in progress. 0: Program execution is stopped.)

 Meaning Acquires the sequence program execution status.

 Response output means as follows:

 1 ..Enabled

 3 ..Enabled and output is cleared at emergency stop

 0 ..Disabled

SAMPLE

Command: @?SEQUENCE[cr/lf]

Response: 0[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

12-28 Chapter 12 Online commands

3.10 Acquiring the version information

Command format

@?VER[cr/lf]

Response format

cv,cr-mv-dv1,dr1/dv2,dr2[cr/lf]

 Values cv ...Host version number

 cr ...Host revision number (Rxxxx)

 mv ...PLO version number (Vx.xx)

 dv? (?: 1, 2)Driver version number (Vx.xx)

 dr? (?: 1, 2)Driver revision number (Rxxxx)

 Meaning Acquires the version information.

SAMPLE

Command: @?VER[cr/lf]

Response: V8.02,R1021-V5.10-V1.01,R0001/V1.01,R0001[cr/lf]

 OK[cr/lf]

3.11 Acquiring the tasks in RUN or SUSPEND status

Command format

@?TASKS[cr/lf]

Response format

n{,n{,{...}}}[cr/lf]

OK[cr/lf]

 Values n: Task number1 to 16 (Task currently run or suspended)

 Meaning Acquires the tasks in RUN or SUSPEND status.

SAMPLE

Command: @?TASKS[cr/lf]

Response: 1,3,4,6[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

Reference commands 12-29

3.12 Acquiring the tasks operation status

Command format

@?TSKMON Tk[cr/lf]

Response format

m,n,f,p[cr/lf]

OK [cr/lf]

 Values k : Task number ..

m : Execution program number

n : Task execution line number

f : Each task status

p : Priority level of each task

1 to 16

1 to 100

1 to 9999

R: RUN

U: SUSPEND

S: STOP

W: WAIT

17 to 47

 Meaning Acquires the status of specified task.

SAMPLE

Command: @?TSKMON T3[cr/lf]

Response: 5,11,R,32[cr/lf]

 OK[cr/lf]

3.13 Acquiring the task end condition

Command format

@?TSKECD Tk[cr/lf]

Response format

gg.bbb[cr/lf]

OK[cr/lf]

 Values k : Task number ..1 to 16

 gg : Alarm group number of the task end condition

 bbb : Alarm classification number of the task end condition

 Meaning Acquires the specified task end condition.

 For details about alarm group number and classification number of the task end

condition, refer to YRCX user’s or operator’s manual.

• When the specified task ends by error, acquires this alarm number.

SAMPLE

Command: @?TSKECD T1[cr/lf] ········ Acquires the end condition of task 1.

Response: 1.5[cr/lf] ··········· The end condition of task 1: 1.5:

Program ended by "HALT".

 OK[cr/lf]

MEMO

7

8

9

10

11

12

13

12-30 Chapter 12 Online commands

3.14 Acquiring the shift status

Command format

@?SHIFT [robot number] [cr/lf]

Response format

m[cr/lf]

OK[cr/lf]

 Values Robot number

m:

1 to 4 (If not input, robot 1 is specified.)

Shift number selected for the specified robot: 0 to 39

Shift not selected: -1

 Meaning Acquires the shift status of the robot specified by the <robot number>.

SAMPLE

Command: @?SHIFT[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

3.15 Acquiring the hand status

Command format

@?HAND [robot number] [cr/lf]

Response format

m[cr/lf]

 Values Robot number

m

1 to 4 (If not input, robot 1 is specified.)

Hand number selected for the specified robot: 0 to 31

Hand not selected: -1

 Meaning Acquires the hand status of the robot specified by the <robot number>.

SAMPLE

Command: @?HAND[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

Reference commands 12-31

3.16 Acquiring the remaining memory capacity

Command format

@?MEM[cr/lf]

Response format

k/m[cr/lf]

 Values k ..Remaining source area (unit: bytes)

 m ...Remaining global identifier area (unit: bytes)

 Meaning Acquires the remaining memory capacity.

SAMPLE

Command: @?MEM[cr/lf]

Response: 102543/1342[cr/lf]

 OK[cr/lf]

3.17 Acquiring the alarm status

Command format

@?ALM[cr/lf]

Response format

gg.bbb[cr/lf]

OK[cr/lf]

 Values gg ...Alarm group number

 bbb ..Alarm classification number

 Meaning Acquires the alarm which occurs in the controller.

 For details regarding the alarm group number and alarm classification number, refer to

the YRCX user's or operator's manual.

• The requirable alarms are number 400 or more of alarm classification number. If multiple

alarms occur, the alarm with larger alarm classification number (more serious alarm) is

acquired.

SAMPLE

Command: @?ALM[cr/lf]

Response: 12.600[cr/lf]

 OK[cr/lf]

MEMO

7

8

9

10

11

12

13

12-32 Chapter 12 Online commands

3.18 Acquiring the emergency stop status

Command format

@?EMG[cr/lf]

Response format

k[cr/lf]

OK[cr/lf]

 Values k: Emergency stop status0: normal operation, 1: emergency stop

 Meaning Acquires the emergency stop status by checking the internal emergency stop flag.

SAMPLE

Command: @?EMG[cr/lf]

Response: 1[cr/lf]

 OK[cr/lf]

3.19 Acquiring the manual movement speed

Command format

@?MSPEED [robot number] [cr/lf]

Response format

k[cr/lf]

OK[cr/lf]

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 k: manual movement speed ...1 to 100 (unit: %)

 Meaning Acquires the value of the manual movement speed specified by <Robot number>.

SAMPLE

Command: @?MSPEED[cr/lf]

Response: 50[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

Reference commands 12-33

3.20 Acquiring the inching movement amount

Command format

@?IDIST [robot number] [cr/lf]

Response format

mmmmm[cr/lf]

OK[cr/lf]

 Values Robot number .. 1 to 4 (If not input, robot 1 is specified.)

 mmmmm: Inching movement amount 1 to 10000

 Meaning Acquires the inching movement amount specified by <Robot number>.

SAMPLE

Command: @?IDIST[2][cr/lf]

Response: 100[c/lf]

 OK[cr/lf]

3.21 Acquiring the last reference point number (current point number)

Command format

@?CURPNT[cr/lf]

Response format

k[cr/lf]

OK[cr/lf]

 Values k: Current point number0 to 29999

 Meaning Acquires the point number which is referred last. The current point number (the point

number of last reference) is renewed by operations which uses the point data (point edit,

for example).

• The current point number is renewed by following operations: the point reference and the point

setting movement by remote commands, the trace movement or teaching by programming box

or SCARA-YRCX Studio, etc.

SAMPLE

Command: @?CURPNT[cr/lf]

Response: 100[cr/lf]

 OK[cr/lf]

MEMO

7

8

9

10

11

12

13

12-34 Chapter 12 Online commands

3.22 Acquiring the output message

Command format

@?MSG[cr/lf]

Response format

sssss ··· ssssss[cr/lf]

OK[cr/lf]

 Values s: Message character string

 Meaning Acquires one line of message which is input from the output message buffer of the

controller by the PRINT statement, etc.

SAMPLE

Command: @?MSG[cr/lf]

Response: MESSAGE[cr/lf] ············ PRINT "MESSAGE" is executed in a

program.

 OK[cr/lf]

• For executing this command, it is required that the "INPUT/PRINT using channel" parameter is

set at the port to execute command.

• When the output message buffer is empty, only "OK" is output as the response.

3.23 Acquiring the input data

Command format

@?INPUT[cr/lf]

Response format

d[cr/lf]

OK[cr/lf]

 Values d: Input data

 Meaning Acquires the input data by the INPUT statement.

SAMPLE

Command: @?INPUT[cr/lf]

Response: INPUT_SAMPLE[cr/lf]

 OK[cr/lf]

MEMO

7

8

9

10

11

12

13

Reference commands 12-35

3.24 Acquiring various values

1. Acquiring the value of a numerical expression

Command format

@?numerical expression[cr/lf]

OK[cr/lf]

Response format

numerical value[cr/lf]

 Meaning Acquires the value of the specified numerical expression.

 The numerical expression's value format is "decimal" or "real number".

SAMPLE 1

Command: @?SQR(100*5)[cr/lf]

Response: 2.236067E01[cr/lf]

 OK[cr/lf]

SAMPLE 2

Command: @?LOC1(WHERE)[cr/lf]

Response: 102054[cr/lf]

 OK[cr/lf]

2. Acquiring the value of a character string expression

Command format

@?character string expression[cr/lf]

Response format

character string[cr/lf]

OK[cr/lf]

 Meaning Acquires the value (character string) of the specified character string expression.

SAMPLE

The case of A$="ABC" and B$="DEF".

Command: @?A$+B$+"123"[cr/lf]

Response: ABCDEF123[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

12-36 Chapter 12 Online commands

3. Acquiring the value of a point expression

Command format

@?point expression[cr/lf]

Response format

point data[cr/lf]

OK[cr/lf]

 Meaning Acquires the value (point data) of the specified point expression.

SAMPLE

Command: @?P1+WHRXY[cr/lf]

Response: 10.410 -1.600 52.150 3.000 0.000 0.000 0 0 0[cr/lf]

 OK[cr/lf]

4. Acquiring the value of a shift expression

Command format

@?shift expression[cr/lf]

OK[cr/lf]

Response format

shift data[cr/lf]

 Meaning Acquires the value (shift data) of the specified shift expression.

SAMPLE

Command: @?s1[cr/lf]

Response: 25.000 12.600 10.000 0.000[cr/lf]

 OK[cr/lf]

7

8

9

10

11

12

13

Operation commands 12-37

 4 Operation commands

4.1 Absolute reset

Command format

@ABSADJ [robot number] k,f[cr/lf]

@MRKSET [robot number] k[cr/lf]

Response format

RUN[cr/lf] ········ At movement start

END[cr/lf] ········ At movement end

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 k ..Axis number: 1 to 6

 f ...Movement direction / 0: + direction, 1: - direction

 Meaning Performs the absolute reset operation of the specified axis of the robot specified by the

<robot number>.

 This command is available only to axes whose return-to-origin method is set as "Mark".

 ABSADJ Moves the specified robot axis to an absolute reset

position.

 MRKSETPerforms absolute reset on the specified robot axis.

SAMPLE

Command: @ABSADJ 1,0[cr/lf]

Response: RUN[cr/lf] ················ Movement start

 END[cr/lf] ················ Movement end

7

8

9

10

11

12

13

12-38 Chapter 12 Online commands

4.2 Return-to-origin operation

Command format

@ORGRTN [robot number] k[cr/lf]

Response format

RUN[cr/lf] ········ At movement start

END[cr/lf] ········ At movement end

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 k ..Axis number: 1 to 6

 Meaning Performs the return-to-origin operation of the specified axis of the robot specified by the

<robot number>.

SAMPLE

Command: @ORGRTN 1[cr/lf]

Response: RUN[cr/lf] ················ Movement start

 END[cr/lf] ················ Movement end

7

8

9

10

11

12

13

Operation commands 12-39

4.3 Manual movement: inching

Command format

@INCH [robot number] km [cr/lf]

@INCHXY [robot number] km [cr/lf]

@INCHT [robot number] km [cr/lf]

Response format

RUN[cr/lf] ········ At movement start

END[cr/lf] ········ At movement end

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 k ..Axis number: 1 to 6

 m ...Movement direction / +, -

 Meaning Manually moves (inching motion) the specified axis of the robot specified by the <robot

number>.

 The robot performs the same motion as when moved manually in inching motion with

the programming box's jog keys (moves a fixed distance each time a jog key is pressed).

 The unit of the movement amount and operation type by command are shown below.

 INCH "pulse" units. Only the specified axis moves.

 INCHXY "mm" units. According to the robot configuration,

the arm tip of the robot moves in the direction of the

Cartesian coordinate system.

 INCHT "mm" units. According to the robot configuration, the

hand attached to the arm tip of the robot moves.

SAMPLE

Command: @INCH 1+[cr/lf]

Response: RUN[cr/lf] ················ Movement start

 END[cr/lf] ················ Movement end

7

8

9

10

11

12

13

12-40 Chapter 12 Online commands

4.4 Manual movement: jog

Command format

@JOG [robot number] km [cr/lf]

@JOGXY [robot number] km [cr/lf]

@JOGT [robot number] km [cr/lf]

Response format

RUN[cr/lf] ········ At movement start

END[cr/lf] ········ At movement end

 Values Robot number1 to 4 (If not input, robot 1 is specified.)

 k ..Axis number: 1 to 6

 m ...Movement direction / +, -

 Meaning Manually moves (jog motion) the specified axis of the robot specified by the <robot

number>.

 The robot performs the same motion as when holding down the programming box's jog

keys in manual mode.

 To continue the operation, it is necessary for the JOG command to input the execution

continue process (^V(=16H)) by the online command at intervals of 200ms. If not input,

the error stop occurs.

 Additionally, after the movement has started, the robot stops when any of the statues

shown below arises.

 • When software limit was reached.

 • When stop signal was turned off.

 • When STOP key on the programming box was pressed.

 • When an online command (^C (=03H)) to interrupt execution was input.

 The unit of the movement amount and operation type by command are shown below.

 JOG "pulse" units. Only the specified axis moves.

 JOGXY "mm" units. According to the robot configuration,

the arm tip of the robot moves in the direction of the

Cartesian coordinate system.

 JOGT "mm" units. According to the robot configuration, the

hand attached to the arm tip of the robot moves.

SAMPLE

Command: @JOG 1+[cr/lf]

Response: RUN[cr/lf] ················ Movement start

 END[cr/lf] ················ Movement end

7

8

9

10

11

12

13

Data file operation commands 12-41

 5 Data file operation commands

5.1 Copy operations

1. Copying a program

Command format

@COPY <program name 1> TO <program name 2> [cr/lf]

 PGn

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values Program name 1 Program name in copy source (32 characters or less

consisting of alphanumeric characters and underscore)

 Program name 2 Program name in copy destination (32 characters

or less consisting of alphanumeric characters and

underscore)

 n: Program number 1 to 100

 Meaning Copies the program specified by <program name 1> or program number to <program

name 2>.

SAMPLE

Command: @COPY <TEST1> TO <TEST2> [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

2. Copying point data

Command format

@COPY Pmmmmm-Pnnnnn TO Pkkkkk[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values mmmmmTop point number in copy source: 0 to 29999

 nnnnnLast point number in copy source: 0 to 29999

 kkkkkTop point number in copy destination: 0 to 29999

 Meaning Copies the point data between Pmmmmm and Pnnnnn to Pkkkkk.

SAMPLE

Command: @COPY P101-P200 TO P1101[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

12-42 Chapter 12 Online commands

3. Copying point comments

Command format

@COPY PCmmmmm-PCnnnnn TO PCkkkkk[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values mmmmmTop point comment number in copy source: 0 to 29999

 nnnnnLast point comment number in copy source: 0 to 29999

 kkkkk Top point comment number in copy destination: 0 to 29999

 Meaning Copies the point comments between PCmmmmm and PCnnnnn to PCkkkkk.

SAMPLE

Command: @COPY PC101-PC200 TO PC1101[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

5.2 Erase

1. Erasing a program

Command format

@ERA <program name> [cr/lf]

 PGn

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values Program name Program name to be erased (32 characters or less

consisting of alphanumeric characters and underscore)

 n: Program number 1 to 100

 Meaning Erases the designated program.

SAMPLE

Command: @ERA <TEST1> [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

Data file operation commands 12-43

2. Erasing point data

Command format

@ERA Pmmmmm-Pnnnnn[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values mmmmmTop point number to be erased: 0 to 29999

 nnnnnLast point number to be erased: 0 to 29999

 Meaning Erases the point data between Pmmmmm and Pnnnnn.

SAMPLE

Command: @ERA P101-P200[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

3. Erasing point comments

Command format

@ERA PCmmmmm-PCnnnnn[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values mmmmmTop point comment number to be erased: 0 to 29999

 nnnnnLast point comment number to be erased: 0 to 29999

 Meaning Erases the point comments between PCmmmmm and PCnnnnn.

SAMPLE

Command: @ERA PC101-PC200[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

12-44 Chapter 12 Online commands

4. Erasing point name

Command format

@ERA PNmmmmm-PNnnnnn [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values mmmmmTop point name number to be erased: 0 to 29999

 nnnnnLast point name number to be erased: 0 to 29999

 Meaning Erases the point names between PNmmmmm and PNnnnnn.

SAMPLE

Command: @ERA PC101-PC200[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

5. Erasing pallet data

Command format

@ERA PLm[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values m ...Pallet number to be erased: 0 to 39

 Meaning Erases the PLm pallet data.

SAMPLE

Command: @ERA PL1[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

Data file operation commands 12-45

6. Erasing hand

Command format

@ERA Hm [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values m ...Hand number to be erased: 0 to 31

 Meaning Erases the hand definition data of "Hm".

SAMPLE

Command: @ERA H2 [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7. Erasing shift

Command format

@ERA Sm [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values m ...Shift number to be erased: 0 to 39

 Meaning Erases the shift data of "Sm".

SAMPLE

Command: @ERA S1 [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

12-46 Chapter 12 Online commands

8. Erasing area check output setting

Command format

@ERA ACm [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values m ...Area check output setting number to be erased: 0 to 31

 Meaning Erases the area check output setting of "ACm".

SAMPLE

Command: @ERA AC3 [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

9. Erasing general-purpose Ethernet port

Command format

@ERA GPm [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values m ...General-purpose Ethernet port number to be erased: 0 to 15

 Meaning Erases the general-purpose Ethernet port of "GPm".

SAMPLE

Command: @ERA GP5 [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

Data file operation commands 12-47

5.3 Rename program

Command format

@REN <program name 1> TO <program name 2> [cr/lf]

 PGn

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values Program name 1

Program name 2

n: Program number

Program name before renaming: shown with 32 characters or

less consisting of alphanumeric characters and _ (underscore)

 Program name after renaming: shown with 32 characters or less

consisting of alphanumeric characters and _ (underscore)

1 to 100

 Meaning Changes the name of the specified program.

SAMPLE

Command: @REN <TEST1> TO <TEST2>[cr/lf]

Response: RUN [cr/lf] ·········· Process start

 END [cr/lf] ·········· Process end

5.4 Changing the program attribute

Command format

@ATTR <program name> TO s [cr/lf]

 PGn

Response format

OK[cr/lf]

 Values Program name

s: Attribute

n: Program number

 Program name to change the attribute: shown with 32 characters

or less consisting of alphanumeric characters and _ (underscore)

RW: Readable/writable

RO: Not writable (read only)

H: Hidden

1 to 100

 Meaning Changes the attribute of the program specified by the <program name> or program

number.

SAMPLE

Command: @ATTR <TEST1> TO RO[cr/lf]

Response: OK[cr/lf]

7

8

9

10

11

12

13

12-48 Chapter 12 Online commands

5.5 Initialization process

1. Initializing the memory area

Command format

@INIT memory area[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values Memory areaMemory area to be initialized.

 One of the following memory areas is specified.

 PGMInitializes the program area.

 PNTInitializes the point data area.

 SFT ...Initializes the shift data area.

 HNDInitializes the hand data area.

 PLT ..Initializes the pallet data area.

 PCMInitializes the point comment area.

 PNMInitializes the point name area.

 IONInitializes the input/output name area.

 ACOInitializes the area check output setting area.

 GEP ..Initializes the general-purpose Ethernet port setting area.

 MEMInitializes the above areas (PGM ... all data up to GEP).

 PRMInitializes the parameter area.

 ALL ..Initializes all areas (MEM+PRM).

 Meaning Initializes the memory area.

SAMPLE

Command: @INIT PGM[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

Data file operation commands 12-49

2. Initializing the communication port

Command format

@INIT communication port [cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Values Communication portCommunication port to be initialized

 Specify any of the ports shown below for the communication port.

 CMUInitializes the RS-232C port.

 ETH ..Initializes the Ethernet port.

 Meaning Initializes the communication port.

 For information about the communication port initial settings, refer to the YRCX user's

or operator's manual.

SAMPLE

Command: @INIT CMU [cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

3. Initializing the alarm history

Command format

@INIT LOG[cr/lf]

Response format

RUN[cr/lf] ········ At prosess start

END[cr/lf] ········ At prosess end

 Meaning Initializes the alarm history.

SAMPLE

Command: @INIT LOG[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

12-50 Chapter 12 Online commands

5.6 Data readout processing

Command format

@READ read-out file[cr/lf]

Response format

BEGIN [cr/lf] ·····················At process start

(Data output: The contents may vary depending on the read-out file.)

END [cr/lf] ·······················At process end

 Values Read-out file Designates a read-out file name.

 Meaning Reads out the data from the designated file.

 Online commands that are input through the RS-232C port have the same meaning as

the following command.

 • SEND <read-out file> TO CMU

 Commands via Ethernet have the same meaning as the following command.

 • SEND <read-out file> TO ETH

Type Read-out file name Definition format
All Individual file

User memory

All file
Program

Point data
Point comment

Point name
Parameter

Shift definition
Hand definition
Pallet definition

General Ethernet port
Input/output name
Area check output

ALL
PGM
PNT
PCM
PNM
PRM
SFT
HND
PLT
GEP
ION
ACO

<bb…b>>

Pn
PCn
PNn

/cccccccc/
Sn
Hn
PLn
GPn

iNMn(n)
ACn

Variable, constant
Variable

Array variable
Constant

VAR
ARY

ab...by
ab...by(x)

"cc...c"

Status

Program directory
Parameter directory

Machine reference (sensor or stroke-end)
Machine reference (mark)

System configuration information
Controller

Robot
Driver

Option board
Self check

Alarm history
Remaining memory size

DIR
DPM
MRF
ARP
CFG
CNT
RBT
DRV
OPT
SCK
LOG
MEM

<<bb…b>>

Device

DI port
DO port
MO port
TO port
LO port
SI port
SO port
SIW port
SOW port

DI()
DO()
MO()
TO()
LO()
SI()
SO()
SIW()
SOW()

DIn()
DOn()
MOn()
TOn()
LOn()
SIn()
SOn()
SIWn()
SOWn()

Others File end code EOF --------
a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or symbol
i: I/O type n: Number x: Expression (Array argument) y: variable type

SAMPLE

Command: @READ PGM [cr/lf] ········· Reads out all programs.

 @READ P100 [cr/lf] ········ Reads out the point 100.

 @READ DINM2(0) [cr/lf] ···· Reads out the input/output name

of DI2(0).

n NOTE
 • For more in fo r mat ion
about files, refer to the
earlier Chapter 10 "Data
file description".

7

8

9

10

11

12

13

Data file operation commands 12-51

5.7 Data write processing

Command format

@WRITE write file[cr/lf]

Response format

READY[cr/lf] ······· Input request display

OK [cr/lf] ········ After input is completed

 Values Write file Designates a write file name.

 Meaning Writes the data in the designated file.

 Online commands that are input through the RS-232C port have the same meaning as

the following command.

 • SEND CMU TO <write file>

 Commands via Ethernet have the same meaning as the following command.

 • SEND ETH TO <write file>

• At the DO, MO, TO, LO, SO, SOW ports, an entire port (DO(), MO(), etc.) cannot be

designated as a WRITE file.

• Some separate files (DOn(), MOn(), etc.) cannot be designated as a WRITE file. For details, refer

to Chapter 10 "Data file description".

Type Write file name Definition format
All Separate file

User memory All file ALL --------
Program PGM <bb…b>>

Point data PNT Pn
Point comment PCM PCn

Point name PNM PNn
Parameter PRM /cccccccc/

Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn

General Ethernet port GEP GPn
Input/output name ION iNMn(n)
Area check output ACO ACn

Variable, constant Variable VAR ab...by
Array variable ARY ab...by(x)

Device DO port -------- DOn()
MO port -------- MOn()
TO port -------- TOn()
LO port -------- LOn()
SO port -------- SOn()

SOW port -------- SOWn()
a: Alphabetic character b: Alphanumeric character or underscore (_) c: Alphanumeric character or symbol
i: I/O type n: Number x: Expression (Array argument) y: variable type

SAMPLE

Command: @WRITE PRM [cr/lf] ········ Writes the label specified

parameter.

 @WRITE P100 [cr/lf] ······· Writes the point 100.

 @WRITE DINM2(0) [cr/lf] ·········Writes the input/output name of

DI2(0).

n NOTE
 • For more in fo r mat ion
about files, refer to the
earlier Chapter 10 "Data
file description".

MEMO

7

8

9

10

11

12

13

12-52 Chapter 12 Online commands

 6 Utility commands

6.1 Setting the sequence program execution flag

Command format

@SEQUENCE k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Execution flag / 0: disable, 1: enable, 3: enable (DO reset)

 Meaning Sets the sequence program execution flag.

SAMPLE

Command: @SEQUENCE 1[cr/lf]

Response: OK[cr/lf]

6.2 Setting the date

Command format

@DATE（yy/mm/dd[cr/lf]

Response format

OK[cr/lf]

 Values yy/mm/ddDate to be set. (year, month, day)

 yy ...Lower 2 digits of the year (00 to 99)

 mm ..Month (01 to 12)

 dd ..Day (01 to 31)

 Meaning Sets a date in the controller.

• The currently set values are used for the omitted items.

• If only [cr/lf] is transmitted, then the date remains unchanged.

• If an improbable date is entered, then "5.202: Data error" occurs.

SAMPLE 1

To change only the day,

 //15[cr/lf] ···················· Day is set to 15th.

SAMPLE 2

Command: @DATE 16/01/14[cr/lf]

Response: OK[cr/lf]

n NOTE
 • To c h a n g e o n l y t h e
year or month, the slash
(/) following it can be
omitted.

 Example:

 To set the year to 2016,
 enter 16[cr/lf].

 To set the month to June,
 enter /06[cr/lf].

MEMO

7

8

9

10

11

12

13

Utility commands 12-53

6.3 Setting the time

Command format

@TIME hh:mm:ss[cr/lf]

Response format

OK[cr/lf]

 Values hh:mm:ssCurrent time

 hh ..hour (00 to 23)

 mm ..minute (00 to 59)

 ss ...second (00 to 59)

 Meaning Sets the time of the controller.

• The currently set values are used for the omitted items.

• If only [cr/lf] is transmitted, then the time remains unchanged.

• If an improbable time is entered, then "5.202: Data error" occurs.

SAMPLE 1

To change only the minute,

 :20:[cr/lf] ···················· Minute is set to 20.

SAMPLE 2

Command: @TIME 10:21:35[cr/lf]

Response: OK[cr/lf]

MEMO

7

8

9

10

11

12

13

12-54 Chapter 12 Online commands

 7 Individual execution of robot language

Command format

@robot language[cr/lf]

Response format 1

OK[cr/lf] or NG=gg.bbb [cr/lf]

Response format 2

RUN[cr/lf] or NG=gg.bbb[cr/lf] ················· At process start

END[cr/lf] or NG=gg.bbb[cr/lf] ················· At process end

 Values OK, END ... Command ended correctly.

 NG .. An error occurred.

 RUN ... Command starts correctly.

 gg: Alarm group number 0 to 99

 bbb: Alarm classification number 0 to 999

 Meaning Robot language commands can be executed.

 • Only independently executable commands are executed.

 • Command format depends on each command to be executed.

SAMPLE 1

Command: @SET DO(20) [cr/lf]

Response: OK[cr/lf]

SAMPLE 2

Command: @MOVE P,P100,S=20[cr/lf]

Response: RUN [cr/lf] ··············· Process start

 END [cr/lf] ··············· Process end

7

8

9

10

11

12

13

Control codes 12-55

 8 Control codes

Command format

^C (=03H)

Response format

NG=1.8

 Meaning Interrupts execution of the current command.

SAMPLE

Command: @MOVE P,P100,S=20[cr/lf]

 ^C

Response: NG=1.8[cr/lf]

Chapter 13

Appendix

1 1 Reserved word list...................................13-1
2 2 Changes from conventional models13-3

7

8

9

10

11

12

13

Reserved word list 13-1

 1 Reserved word list

The words shown below are reserved for robot language and cannot be used as identifiers (variables, etc.).

A
ABS
ABSADJ
ABSRPOS
ACC
ACCEL
ACCESS
ACO
ALL
ALM
ALMRST
AND
ARCHP1
ARCHP2
ARM
ARMCND
ARMSEL
ARMTYP
ARP
ARY
ASPEED
ATN
ATN2
ATTR
AXWGHT
B
BIN
BREAK
C
CALL
CASE
CFG
CHANGE
CHGPRI
CHR
CLOSE
CMU
CNT
CONT
CONTPLS
COPY
COS
CURPNT
CURTQST
CURTRQ
CUT
D

DATE
DBP
DEC
DECEL
DEF
DEGRAD
DELAY
DI
DIM
DIR
DIST
DO
DPM
DRIVE
DRIVEI
DRV
E
ELSE
ELSEIF
EMG
END
ENDIF
EOF
EQV
ERA
ERL
ERR
ERROR
ETH
ETHSTS
EXIT
EXITTASK
F
FN
FOR
FREE
G
GEP
GEPSTS
GO
GOSUB
GOTO
H
HALT
HALTALL
HAND
HEX

HND
HOLD
HOLDALL
I
IDIST
IF
IMP
INCH
INCHT
INCHXY
INIT
INPUT
INT
ION
J
JOG
JOGT
JOGXY
JTOXY
L
LEFT
LEFTY
LEN
LET
LINEMODE
LO
LOAD
LOC1
LOC2
LOC3
LOC4
LOC5
LOC6
LOCF
LOG
LSHIFT
M
MAINPG
MCHREF
MEM
MID
MO
MOD
MODE
MOTOR
MOVE
MOVEI

MOVET
MRF
MRKSET
MSG
MSGCLR
MSPEED
MTRDUTY
N
NAME
NEXT
NOT
O
OFF
OFFLINE
ON
ONLINE
OPEN
OPT
OR
ORD
ORGORD
ORGRTN
ORIGIN
OUT
OUTPOS
P
P
PATH
PC
PCM
PDEF
PGM
PGMTSK
PGN
PLT
PMOVE
PNM
PNT
PPNT
PRINT
PRM
PSHFRC
PSHJGSP
PSHMTD
PSHRSLT
PSHSPD
PSHTIME

7

8

9

10

11

12

13

13-2 Chapter 13 Appendix

Because the following names are used as system variable names, they cannot be used at the beginning of other
variable names (n: numeric value).

ACn GPn PNn SOn
DIn Hn SGIn SONMn
DINMn LOn SGRn TOn
DOn MOn SIn
DONMn PCn SINMn
FN Pn Sn

Variable name usage examples

 ■ Although keywords which are reserved as robot language words cannot be used as they are, they can be used as

variable names if alphanumeric characters are added to them.

 Example: "ABS" cannot be used, but "ABS1" or "ABSX" can be used.

 ■ Keywords reserved as system variables cannot be used at the beginning of other variable names, even if

alphanumeric characters are added to them.

 Example: "FN" cannot be used. "FNA" and "FN123" also cannot be used.

PUSH
PWR
R
RADDEG
RBT
READ
REF
REM
REN
RESET
RESTART
RESUME
RETURN
RIGHT
RIGHTY
RSHIFT
RUN
RUNTO
S
S
SCK
SELECT
SEND
SEQCMPL
SEQUENCE
SERVO

SET
SETGEP
SETPW
SFT
SGI
SGR
SHARED
SHIFT
SI
SID
SIN
SIW
SKIP
SKIPTO
SO
SOD
SOW
SPEED
SQR
START
STEP
STOP
STOPON
STR
SUB
SUSPEND

SWI
SYNCHK
T
TAG
TAN
TASKS
TCHXY
TCOUNTER
TEACH
THEN
TIM
TIME
TIMER
TO
TOLE
TORQUE
TSKECD
TSKMON
TSKPGM
V
VAL
VAR
VEL
VER
W
WAIT

WEIGHT
WEND
WHERE
WHILE
WHRXY
WRITE
X
XOR
XY
XYTOJ
Y
YZ
Z
ZX

7

8

9

10

11

12

13

Changes from conventional models 13-3

 2 Changes from conventional models

1 Program name

For YRCX, the following two program names which have been special for conventional models (YRC,

etc.) don't have a special meaning.

A) FUNCTION

B) _SELECT

A) FUNCTION

In conventional models (YRC, etc.), "FUNCTION" has been special program for registering a user

function. YRCX doesn't have a user function and "FUNCTION" doesn't have a special meaning.

B) _SELECT

In conventional models (YRC, etc.), the "_SELECT" program has been selected and executed every

time robot programs were reset.

In YRCX, the program specified at the main program number (or the program executed last if there

is no specified program there) is selected and executed when robot programs are reset.

For details regarding the main program, refer to "12. Set main program" in "2.1 Program operations"

in Chapter 12.

2 Multiple Robot Control

In conventional models (YRC, etc.), robot has consisted of a main group (one main robot, main

auxiliary axes) and a sub group (one sub robot, sub auxiliary axes).

In YRCX, robot consists of robot 1 to 4 (normal axes, auxiliary axes).

Due to this change, commands for each group have changed to ones for each robot.

For details regarding the command for each robot, refer to "2. Command list with a robot setting" in

Chapter 5 of this manual for YRCX, and regarding the command for each group, refer to "Command

list for each group” of the programming manual for conventional models (YRC, etc.), respectively.

SAMPLE

Command for each group: conventional model (YRC, etc.)
 MOVE P, P1 ··················· Axes of a main group move to the

position specified by P1.

 MOVE2 P, P5 ·················· Axes of a sub group move to the

position specified by P5.

Command for each robot: YRCX
 MOVE P, P1 ··················· Axes of the robot 1 move to the

position specified by P1.

 MOVE[2] P, P5 ················ Axes of the robot 2 move to the

position specified by P5.

• The command with robot setting can be omitted a robot number. If it is omitted, robot 1 is

specified.
MEMO

7

8

9

10

11

12

13

13-4 Chapter 13 Appendix

3 Multi-tasking

The differences between YRCX and conventional models (YRC, etc.) are shown below.

Conventional models YRCX
Maximum number of task 8 16
Priority 17 to 47 1 to 63
Task definition During the program In another program

Starting tasks
Task is assigned
in Task 1 automatically
and placed in RUN status

Task is assigned
in a specified task number
and placed in RUN status

Command execution for
Task 1 (restart, etc.) Not executable Executable

For details regarding the multi-tasking, refer to Chapter 6 "Multi-tasking" in this manual or in a

programming manual for conventional models (YRC, etc.).

4 Robot Language

1. In YRCX, the robot languages shown below are added to ones of conventional models (YRC, etc.).

ARMSEL CLOSE CURTQST ETHSTS
GEPSTS HALTALL HOLDALL MOTOR
MOVET MTRDUTY OPEN PGMTSK
PGN PSHFRC PSHJGSP PSHMTD
PSHRSLT PSHSPD PSHTIME PUSH
SETGEP TSKPGM

For details regarding the robot Language, refer to Chapter 8 "Robot Language Lists".

2. These robot languages for conventional models (YRC, etc.) became unavailable in YRCX.

ABSINIT ABSINIT2 ABSRST ABSRPOS2
ACCEL2 ARMCND2 ARMTYP2 ASPEED2
AXWGHT2 CHANGE2 CURTRQ2 DECEL2
DECLARE DRIVE2 DRIVEI2 HAND2
JTOXY2 LEFTY2 MCHREF2 MOVE2
MOVEI2 ORGORD2 OUTPOS2 PMOVE2
RIGHTY2 SERVO2 SHIFT2 SPEED2
TOLE2 TORQUE2 TRQSTS TRQSTS2
TRQTIME TRQTIME2 WAIT ARM2 WEIGHT2
WHERE2 WHRXY2 XYTOJ2 _SYSFLG

For details regarding the robot Language, refer to "Robot Language Lists" of a programming manual

for conventional models (YRC, etc.).

7

8

9

10

11

12

13

Changes from conventional models 13-5

5 Online commands

1. In YRCX, the online commands shown below are added to ones of conventional models

 (YRC, etc.).

RUNTO SKIPTO MRKSET IDIST
INCHXY INCHT JOGXY JOGT
TCHXY SYNCHK SEQCMPL LOAD
MAINPG MSGCLR SETPW ALMRST
? ALM ? CURPNT ? IDIST ? INPUT
? LONEMODE ? MAINPG ? MODE ? MSG
? MSPEED ? TSKECD

For details regarding the online commands, refer to Chapter 12 "Online commands".

2. These online commands for conventional models (YRC, etc.) became unavailable in YRCX.

AUTO EMGRST EXELV MANUAL
? ARM ? CONFIG ? EXELVL ? OPSLOT
? SELFCHK ? WHRXYEX

For details regarding the online commands, refer to "Online commands" of a programming manual

for conventional models (YRC, etc.).

6 Data file

In YRCX, the data files shown below are added to ones of conventional models (YRC, etc.).

1. Point name file

2. General Ethernet port file

3. Input/output name file

4. Area check output file

5. System configuration information file

6. Version information file

7. Option board file

8. Self check file

9. Remaining memory size file

For details regarding the data files, refer to Chapter 10 "Data file description".

• "Alarm history file" replaced "Error message history file" and "Error message history details file"

of conventional models.

• In YRCX, the point number ranges from 0 to 29999 (0 to 9999: Conventional models).

MEMO

Index

Index 1

Index

A
Absolute reset …………………………………………… 12-37
Acceleration coefficient …………………………………… 8-20
Acceleration setting ……………………… 8-109, 8-121, 8-131
Acquiring return-to-origin status ………………………… 12-23
Acquiring the access level ……………………………… 12-25
Acquiring the break point status………………………… 12-25
Acquiring the emergency stop status ………………… 12-32
Acquiring the mode status ……………………………… 12-26
Acquiring the remaining memory capacity …………… 12-31
Acquiring the servo status ……………………………… 12-24
Acquiring the shift status ………… 12-29, 12-30, 12-31, 12-33
Acquiring the tasks in RUN status ……………………… 12-28
Acquiring the tasks in SUSPEND status ……………… 12-28
Acquiring the tasks operation status …………………… 12-29
Acquiring the version information ……………………… 12-28
All file ……………………………………………… 10-32, 10-33
Arch motion setting ……………………………… 8-105, 8-164
Area check output ……………………………………… 10-30

Erase …………………………………………………… 12-46
Initializing ……………………………………………… 12-48
Read-out ……………………………………………… 12-50

Arithmetic assignment statement ………………………… 8-84
Arithmetic operations ……………………………………… 4-1
Arm lock output ……………………………………………… 8-87
Arm lock output variable …………………………………… 3-11
Arm lock output variables ………………………………… 7-6
Array subscript ……………………………………………… 8-44
Array variable file ………………………………… 10-53, 10-54
Array variables ……………………………………………… 3-5
Assignment statement ……………………………………… 8-84
AUTO movement speed …………………………………… 8-26
Axis tip weight ……………………………………………… 8-28

B

Bit Settings ………………………………………………… 3-17

C

Cartesian coordinate format ……………………………… 4-5
CASE ……………………………………………………… 8-190
Change the MANUAL mode speed …………………… 12-17
Changing the program attribute ………………………… 12-47
Character constants ………………………………………… 2-2

Character string
Comparison ……………………………………………… 4-4
Connection ……………………………………………… 4-4
Link ………………………………………………………… 8-85
Operations ………………………………………………… 4-4

Character string assignment statement ………………… 8-85
Circular interpolation movement ……………… 8-100, 8-145
Command list with a robot setting ………………………… 5-2
Command Statement Format ……………………………… 1-5
Comment …………………………………………… 1-5, 8-182
COMMON …………………………………………………… 1-3
Communication port ……………………………… 8-133, 8-137
Constant file ……………………………………………… 10-52
Control codes …………………………………………… 12-55
Control multiple robots……………………………………… 5-1
CONT setting …… 8-97, 8-107, 8-119, 8-129, 8-155, 8-157
Coordinate plane setting ………………………… 8-110, 8-149
Copying point comments………………………………… 12-42
Copying point data ……………………………………… 12-41

D

Data file ……………………………………………… 10-1, 10-2
Data file types …………………………………………… 10-1

Data format conversion …………………………………… 4-3
Data readout processing ………………………………… 12-50
Data write processing …………………………………… 12-51
Deceleration rate …………………………………………… 8-39
Deceleration setting ……………………… 8-109, 8-121, 8-131
Declares array variable …………………………………… 8-44
Define point ……………………………………………… 8-166
Defines functions which can be used by the user ……… 8-40
DI/DO conditional expressions …………………………… 4-6
DI file ……………………………………………… 10-55, 10-56
DO file …………………………………………… 10-57, 10-58
Dummy argument ………………………………………… 8-213
Dynamic variables ………………………………………… 3-18

E

EOF file …………………………………………………… 10-73
Erasing …………………………………………………… 12-42

Area check output setting …………………………… 12-46
General-purpose Ethernet port ……………………… 12-46
Hand …………………………………………………… 12-45
Pallet data ……………………………………………… 12-44
Point comments ……………………………………… 12-43
Point data ……………………………………………… 12-43
Point name …………………………………………… 12-44
Program ………………………………………………… 12-42
Shift …………………………………………………… 12-45

2 Index

Error processing ………………………………… 8-134, 8-185
Error recovery processing ……………………………… 8-185
Ethernet port communication file ……………………… 10-75
Executes absolute movement of specified axes ………… 8-48

F

Functions: in alphabetic order …………………………… 8-13
Functions: operation-specific ……………………………… 8-16

G

General Ethernet port
Read-out ……………………………………………… 12-50

General-purpose Ethernet port
Erase …………………………………………………… 12-46

Global variable …………………………………………… 10-46
Global variables …………………………………………… 3-18

H

Hand
Acquiring the status …………………………………… 12-30
Define ……………………………………………………… 8-70
Definition file …………………………………… 10-18, 10-19
Erase …………………………………………………… 12-45
Left-handed system ……………………………………… 8-82
Right-handed system ………………………………… 8-188

Hand system flag 4-5, 8-101, 8-115, 8-125, 8-166, 10-5, 10-21

I

IF ……………………………………………………………… 8-75
Block IF statement ……………………………………… 8-76
Simple IF statement ……………………………………… 8-75

Initializing ………………………………………………… 12-48
Alarm history …………………………………………… 12-49
Communication port …………………………………… 12-49
Memory area …………………………………………… 12-48

Integer constants …………………………………………… 2-1
Internal output variable …………………………………… 3-10

J

Joint coordinate format …………………………………… 4-5

L

Label ………………………………………………………… 1-4
LABEL Statement …………………………………………… 1-4
Left-hand system …………………………………………… 8-82
Linear interpolation movement … 8-99, 8-114, 8-124, 8-145
Local variable …………………………………………… 8-213

Local variables ……………………………………………… 3-18
LO file ……………………………………………… 10-61, 10-62
Logic operations …………………………………………… 4-2

M

MANUAL mode operation ……………………………… 12-17
MO file …………………………………………… 10-59, 10-60
Movement speed ………………………………………… 8-209
Moves the specified robot axes in a relative manner …… 8-52
Multi-task …………………………………………………… 6-1

N

Numeric constants ………………………………………… 2-1

O

Online Command List ……………………………………… 12-1
Operation speed …………………………………………… 8-26
OUT enable position …………………………………… 8-143

P

Pallet
Define …………………………………………………… 8-159
Definition file …………………… 10-20, 10-21, 10-22, 10-23
Definition number ……………………………………… 8-162
Erase …………………………………………………… 12-44
Movement ……………………………………………… 8-162
Position number ……………………………………… 8-162

Palletizing …………………………………………… 11-4, 11-10
Parallel input variable ……………………………………… 3-8
Parallel output variable …………………………………… 3-9
Parallel port ………………………………………… 8-43, 8-46
Parameter directory file ………………………………… 10-36
Parameter file …………………… 10-12, 10-13, 10-14, 10-15
PATH ………………………………………………… 8-145, 9-1

Cautions when using this function ……………………… 9-2
Ends the path setting ………………………………… 8-151
Features …………………………………………………… 9-1
How to use ……………………………………………… 9-1
Specifies the motion path …………………………… 8-145
Starts the PATH motion ……………………………… 8-155
Starts the path setting ………………………………… 8-152

Performs absolute movement ……………8-97, 8-112, 8-122
Pick and place …………………………………………… 11-12
Point assignment statement ……………………………… 8-85
Point comment file ………………… 10-8, 10-9, 10-10, 10-11
Point data

Erase …………………………………………………… 12-43
Format …………………………………………………… 4-5

Point data variable ………………………………………… 3-7

Index 3

Point file ……………………………………………………… 10-5
Port output setting ……………………………… 8-111, 8-150
Priority of arithmetic operation …………………………… 4-3
Program

Copy …………………………………………………… 12-41
Erase …………………………………………………… 12-42
Stop ……………………………………………… 8-68, 8-69
Switch …………………………………………………… 8-216
Temporarily stop ………………………………… 8-73, 8-74

Program directory file …………………………… 10-34, 10-35
Program execution wait …………………………………… 8-42
Program file ………………………………………… 10-3, 10-4
Program level …………………………………………… 8-198
Program Names …………………………………………… 1-2
Program operations ………………………………………… 12-9
PTP movement 8-48, 8-52, 8-97, 8-112, 8-122, 8-162, 8-176

R

Read-out file ……………………………………………… 8-191
Ready queues ……………………………………………… 6-3
Real constants ……………………………………………… 2-1
Reference commands …………………………………… 12-23
Relational operators ………………………………………… 4-1
Rename program name ………………………………… 12-47
Reserved word list ………………………………………… 13-1
Return-to-origin sequence ……………………………… 8-140
Right-handed system …………………………………… 8-188
RS-232C ………………………………………… 11-18, 11-19

S

SEQUENCE ………………………………………………… 1-2
Sequence function ………………………………………… 7-1
Sequence program

Acquiring the execution status ……………………… 12-27
Compiling ………………………………………………… 7-3
Creating …………………………………………………… 7-5
Executing ………………………………………………… 7-4
Priority of logic operations ……………………………… 7-8
Program capacity ………………………………………… 7-8
Programming method …………………………………… 7-1
Scan time ………………………………………………… 7-8
Setting the execution flag …………………………… 12-52
Specifications …………………………………………… 7-8
STEP execution ………………………………………… 7-4

SEQUENCE program ……………………………………… 1-2
Serial double word input …………………………………… 3-15
Serial double word output ………………………………… 3-16
Serial input variable ………………………………………… 3-13
Serial output variable ……………………………………… 3-14
Serial port communication file ………………………… 10-74
Serial word input …………………………………………… 3-15

Serial word output ………………………………………… 3-16
Servo status ……………………………………………… 8-193
Setting the sequence program execution flag ………… 12-52
Shift

Erase …………………………………………………… 12-45
Shift assignment statement ……………………………… 8-86
Shift coordinate …………………………………… 8-199, 8-204

Definition file …………………………………… 10-16, 10-17
Shift variable ………………………………………………… 3-8
SI file ……………………………………………… 10-65, 10-66
SIW file …………………………………………… 10-69, 10-70
SO file……………………………………………… 10-67, 10-68
SOW file …………………………………………… 10-71, 10-72
Static variables ……………………………………………… 3-18
STOPON condition setting … 8-51, 8-56, 8-106, 8-118, 8-128,
8-156, 8-165
Sub-procedure ………………………………8-29, 8-198, 8-213
Subroutine ………………………………………… 8-135, 8-137
System prior to shipment ………………………………… 5-1
System Variables ……………………………………… 3-2, 3-7

T

Task
Condition wait …………………………………………… 6-4
Definition ………………………………………………… 6-1
Deleting …………………………………………………… 6-6
Number ………………………………………………… 8-211
Priority order ……………………………………………… 6-1
Priority ranking …………………………………… 8-31, 8-211
Program example ………………………………………… 6-8
Restart ………………………………………………… 8-184
Restarting ………………………………………………… 6-5
Scheduling ………………………………………………… 6-3
Sharing the data ………………………………………… 6-8
Start …………………………………………………… 8-211
Starting …………………………………………………… 6-2
Status and transition …………………………………… 6-2
Stopping …………………………………………………… 6-7
Suspending ……………………………………………… 6-5
Temporarily stop ……………………………………… 8-215
Terminate ………………………………………… 8-37, 8-63

Task status
NON EXISTENT ………………………………………… 6-2
READY …………………………………………………… 6-2
RUN ……………………………………………………… 6-2
STOP ……………………………………………………… 6-2
SUSPEND ………………………………………………… 6-2
WAIT ……………………………………………………… 6-2

Timer output variable ……………………………………… 3-12
Tip weight ………………………………………………… 8-229
TO file ……………………………………………… 10-63, 10-64
Tolerance ………………………………………………… 8-222

4 Index

TO port …………………………………………………… 8-221
Type Conversions…………………………………………… 3-6

U

User program examples
Application ………………………………………………… 11-8
Basic operation …………………………………………… 11-1

User Variables ……………………………………………… 3-2
Using point numbers ……………………………………… 11-2
Using shift coordinates …………………………………… 11-3

V

Valid range of variables …………………………………… 3-18
Value Pass-Along & Reference Pass-Along …………… 3-6
Variable file ……………………………………………… 10-46
Variable Names …………………………………………… 3-3
Variable Types ……………………………………………… 3-4

W

WAIT status ………………………………………………… 6-4
Write file …………………………………………………… 8-191

X

XY setting …………………………………………………… 8-51

Revision history
A manual revision code appears as a suffix to the catalog number on the front cover manual.

Cat. No. I232E-EN-01A

Revision code

The following table outlines the changes made to the manual during each revision.

Revision code Date Description

01 June 2016 Original production

01A February 2018 Small corrections

